Seismic Isolation Buildings in Japan

May 2017

Building Research Institute, Japan

Matsutaro SEKI

Seismic Isolation Buildings, Japan

Contents

- 1. Principle of Seismic Isolation
- 2. History of Seismic Isolation
- **3. Seismic Isolation Devices**
- 4. Design of Seismic Isolation Buildings
- 5. Examples of Seismic Isolation Buildings
- 6. Verification of Seismic Isolation Effect

Principle of Seismic Isolation

Horizontal Displacement (δ), Drift Angle (R)

Strength vs. Horizontal Displacement

Principle of seismic isolation

Principle of Seismic Isolation Response Spectrum

Principle of Seismic Isolation

Comparison of seismic isolation structure and conventional structure

E-Defense full size seismic isolation building test

Comparison of seismic isolation and non-isolation 1

(Slide presented by Ichijou Koumuten. Corp.)

この実験は、(株) 一条工務店の2階建て戸建免震住宅と非免震住宅の実物を、兵庫県三木市にあるE-ディフェンスで比較実験したものです。

Non-isolation

Isolation

Comparison of seismic isolation and non-isolation 2

(Slide presented by Ichijou Koumuten. Corp.)

この実験は、(株) 一条工務店の2階建て戸建免震住宅と非免震住宅の実物を、兵庫県三木市にあるE-ディフェンスで比較実験したものです。

Non-isolation

Isolation

Kenzaburo Kito, 1924, Japan

Seismic Isolation with Ball Bearings

Koya Yamashita, 1927, Japan

Base Isolation with Sliding Plate and Steel Plate

Ryuichi Oka, 1934, Japan

Friction mechanism at the top and bottom of the column

1252:Constructed, 1923:Damaged due to Kanto Earth., 1926:Repaired, 1960:Restrengthed by Base Isolation

Statue of Buddha at Kamakura, Japan

Apartment House

1966

Albany Court House (London, UK))

Base Isolation Device

1969

School Building, Skopije City, Makedonija.

(Donated by Pesttalozzi Foundation, Switzerland)

1986 Obayashi Tech. Res. Institute, Japan

High Technology R & D Center

Base Isolation Devices

(Laminated Natural Rubber Bearings + Steel Bars damper)

Plan of Building

Elastomeric Seismic-Protection Isolators

Types of seismic isolators

Steel Damper (Shin Nihon Steel Co.)

Oil Damper

Lead Damper (Mitsubishi Material Co.)

Testing of Horizontal Direction for Laminated Rubber Bearing

Test Results 1991 Seki **Breaking Points**

Interaction Curve of Ultimate State

Compression & Shear Testing Machine

Dinamic compression & Shear Test

Shear deformation: ±600 mm(Shear strain 300%)

Shear & Tensile breaking Test

Compression & Shear breaking Test

Guideline for Structural Safety Evaluation of Seismic Isolation, Building Center of Japan July 1989

告書 報 No.2 免震構造安全評価指針部会 平成元年7月 財団法人日本建築センター

新建築構造技術研究

Design of Seismic Isolation Buildings

After Takeda et al.,1988

Design of Seismic Isolation Buildings

Ground motion Types and Input Levels for Response Analysis

		Maximum Acceleration (gal)	
Input Ground Motions		Level 1 (≒ 25 cm/s)	Level 2 (≒ 50 cm/s)
Site Recorded Motions	El Centro NS 1940	255	510
	Taft EW 1952	248	496
Long Period Motions	Hachinohe NS 1968	165	330
	Hachinohe EW 1968	128	256
Structure Modeling for Response Analysis

(c) Single degree of freedom model

Design of Seismic Isolation Buildings Performance Criteria for Response Analysis (an example)

Maximum Velocity	Seismic Performance	
	Super Structure	Max. Disp. of Seismic Isolation Device
25 cm/s	Elastic Behavior	≦ Stable Disp.
50 cm/s	≦Yielding Strength	≦ Performance Guaranteed Disp.

Response Horizontal Displacement (m)

Horizontal Disp. (m)

Vertical Stress vs. Maximum Horizontal Displacement of Seismic Isolation Devices (an example)

Collision Test at E-Defense shaking table , Japan

Seimic Isolation Buildings, Japan

Examples of Seismic Isolation Buildings

Location of seismic isolation devices

Seismic Isolation Building, Japan A Boutique Building in Tokyo

5th JSSI Award, 2004 MENSHIN,NO.5,2004.8

http://www.sawadalab.se.shibaurait.ac.jp/kenken/kenken2005

Seismic Isolation Building, Japan A Boutique Building in Tokyo

Seismic Isolator

Seismic Isolation Building, Japan Middle Floor Isolation

14F, B2F, Isolation Story: between 9F and 10F Office(1-9F, S), Residence (10-14F, RC)

http://www.nikken.co.jp/ja/archives/20013.html

Seismic Isolation Building, Japan Middle Floor Isolation

Isolation Story (Isolator + Lead Damper)

http://www.nikken.co.jp/ja/archives/20013.html

Thousand City, Kawasaki, Japan A 7 buildings district (with one thousand residential

housing units) seismically isolated, Dec. 2002

http://www.taisei-design.jp/de/feature/menshin/gaiku01.html#

Seismic Isolation Building, Japan Strengthened by Seismic Isolation

Osaka Central Public Hall (1918)

5th JSSI Award, 2004 MENSHIN,NO.5,2004.8

Seismic Isolation Building, Japan Strengthened by Seismic Isolation Tokyo Station (1914:Original Construction)

http://image.search.yahoo.co.jp/search?rkf=2&ei=UTF-

High rise Residential Building

Location: Kobe City, Japan

Story :43 Stories

Height : 152 m

Super structure: Reinforced Concrete

Seki M., UTCB Lecture note, May 2017, BRI, Japan

Building with Big Tower (NTT Facilities)

TMD

5th JSSI Award, 2004

MENSHIN, NO.5, 2004.8

Visco-Elastic Damper

Osaka City

Murakami City Office, Niigata Pre. Kajima Corporation

5th JSSI Award, 2004 MENSHIN,NO.5,2004.8

Exterior View after Strengthened by Seismic Isolation

Hyogo Pref. Museum

5th JSSI Award, 2004

MENSHIN, NO.5, 2004.8

(Tadao Ando, Obayashi Corporation)

Section

Exterior View

Seismic Isolation Building, Japan Pola Art Museum 5th JSSI Award, 2004

(Nikken Sekkei Co., Tkenaka Corporation)

Exterior View

MENSHIN, NO.5, 2004.8 メイントラス 諸層ゴム 一鉛ダンパー 63.000 76 000 **Section**

Atrium

Number of seismic isolation buildings (except Japan)

Seki M., UTCB Lecture note, May 2017, BRI, Japan

Kun Ming Chang Shui International Airport (China)

A=560,000m² Biggest building in the world, Completed in 2012.4

http://baike.baidu.com/picture/6238016/6329444/

Kun Ming Chang Shui International Airport (China)

(Photo; M.Seki)

Kun Ming Chang Shui International Airport (China)

Natural rubber bearing : 1180 Lead plug rubber bearing : 654 (1000mmΦ)

(Photo; M.Seki)

Oil damper: 108 (600¢,1800L)

(Photo; M.Seki)

A=240,000m²,RC, Completed in 2015 , Five buildings; 6F, 12F, 20F, 27F, 30F are on the common B4F

A=240,000m²,RC, Completed in 2015 , Five buildings; 6F, 12F, 20F, 27F, 30F on the common B4F

A=240,000m²,RC, Completed in 2015 , Five buildings; 6F, 12F, 20F, 27F, 30F on the common B4F

(Photo; M.Seki)

Natural rubber bearings:388(900-1000Φ), Oil damper:70 (1500KN) Isolation devices are installed between B4F and B3F

Bucharest City Hall (Romania)

Brick masonry, 4F,B1,PH1, A=20,000m², Original 1910, Retrofitted in 2015.

Bucharest City Hall (Romania)

Natural rubber bearings:262(1000mmΦ)

Oil dampers:36 (1750KN, ±700mm)

(Photo; M.Seki)

The Civil Engineering Research Center of The National Taiwan University (Taiwan)

PC, 9F,B1F,PH2F, Isolated at top of 1st floor column

(Photo; S.J.Wang)
The Civil Engineering Research Center of The National Taiwan University (Taiwan)

(Photo; S.J.Wang)

Lead plug rubber bearing: 19 (900mm Φ)

The Civil Engineering Research Center of The National Taiwan University (Taiwan)

Viscous damper: 6 (1000KN)

Flexible joints

(Photo; S.J.Wang)

Anacleto Angelini Center for Innovation and Technology (Santiago, Chile)

RC, 11F,B3F, A=20,000m², The biggest bld. in South America, The design Museum Award (London), Completed in 2013

(Photo; SIRVE S.A. Co.)

Anacleto Angelini Center for Innovation and Technology (Santiago, Chile)

Inner core frame is supported at B3F.

HDRB:43 (12 of them: Lead plug)(750-850mmΦ), Friction bearing:12, Supported at the top of column of B1F

(Photo; SIRVE S.A. Co.)

M.Seki, Bucharest Seminar on Seismic Isolation, 11th October 2016, Bucharest, Romania

Residential complex called "Dawn" (Russia)

Lead plug rubber bearing:160 (Plug: 800mmΦ)

(Photo; V. Smirnov)

24F,B3F, H=105m, Completed in 2015.9, 3 storeyed car parking is a common bed floor

Sabiha Gökçen International Airport (SIGA) Terminal Building (Istanbul, Turkey)

S, 4F,B1F BxD=160mx272m, H-32.5m,Completed in 2209, ECCS Award

(Photo; Prota Inc.)

Sabiha Gökçen International Airport (SIGA) Terminal Building (Istanbul, Turkey)

Inside Steel Frame

(Photo; Prota Inc.)

Sabiha Gökçen International Airport (SIGA) Terminal Building (Istanbul, Turkey)

Under construction of steel frame

Isolator: 296 pieces between ground floor and basement (Photo; Prota Inc.)

Wellington Regional Hospital building (New Zealand)

RC, 10F, BxD=160mx100m, A=60,000m², Biggest of all New Zealand seismic isolation buildings Lead plug rubber bearing:135, Flat slide baering:132

(Photo; D. Whittaker)

M.Seki, Bucharest Seminar on Seismic Isolation, 11th October 2016, Bucharest, Romania

Multi-functional Residential Complex of Seismic Isolated Buildings/Twins "Northern Ray" (Yerevan,Armenia)

RC,15F,B3F, Twin Residential buildings, H-53.25m

(Photo; M. Melkumyan)

Multi-functional Residential Complex of Seismic Isolated Buildings/Twins "Northern Ray" (Yerevan, Armenia) **Upper floor** O < 1000 kN<1300kN ○ < 1450kN</p> **Lower Floor** Retaining wall (Fig.; M. Melkumyan)

Seki M., UTCB Lecture note, May 2017, BRI, Japan

6400

6400

6400

6400

6400

Multi-functional Residential Complex of Seismic Isolated Buildings/Twins "Northern Ray" (Yerevan,Armenia)

Main building of the New Regional Emergency Management Centre, Foligno (Italy)

RC dome, 32mΦ, 3F, Emergency Management Center, European Concrete Award(ECSN-2012) & Premio di Eccellenza Award (AICAP-2010)

(Photo; Alberto Parducci)

Main building of the New Regional Emergency Management Centre, Foligno (Italy)

(Photo; Alberto Parducci)

Los Angeles City Hall, Los Angeles, California(USA)

S+BW(External), 26F H=138m, The highest base isolated building in USA A=83,000m^{2,} W≒1,100,000KN Original construction:1928 Damaged in 1994 Northridge Earthquake Retrofitted: 1999-2001

(Photo; SIE, Inc.)

Seki M., UTCB Lecture note, May 2017, BRI, Japan

Los Angeles City Hall, Los Angeles, California(USA)

HDRB:416 Friction bearing:90(900-1300mmΦ, Viscous damper:52(±580mm capacity) RC shear walls are newly installed in upper storeys. 12 Viscous dampers at 24F-26F tower.

(Photo; SIE Inc.)

Earthquake Around Japan Island (1900-2017)

Northelege Earthquake(1994.1.17)

Hospital, South California Univ.

Observed Accelerations (NS)

Hyogo Ken Nanbu Earthquake (1995.1.17)

Seismic Isolation Effect

Tokachi - Oki Earthquake, 2003

September 26th, 2003

Magnitude: 7.0

Kushiro City, Hokkaido

Office Building(Local Government)

Basement: One story, Nine Stories, PH: One story

SRC, RC Piles (-31.5m)

(Kashima et al.: MENSHIN,NO.43,2004.2)

Exterior View of Building

Location of Accelerometers

Niigata Cyuetsu Earthquake (October, 2004)

Niigata Cyuetsu Earthquake (October, 2004)

Niigata Cyuetsu Earthquake (October, 2004)

Niigata Cyuetsu Earthquake (October, 2004)

Seki M., UTCB Lecture note, May 2017, BRI, Japan

Seismic Intensity: Tohoku Earthquake, 11th, March, 2011

Verification of Seismic Isolation Effect Fukushima 1st Nuclear Power Plants

Verification of Seismic Isolation Effect Fukushima 1st Nuclear Power Plants

Seismic Isolation Building Used as Rescue Center

http://arinkurin.cocolognifty.com/blog/2013/06/http.html

Damage of Main

Building

Fukushima 1st Nuclear Power Plants

福島第一原発(gal)			
F1	NS	EW	UD
BASE	582	756	446
1FL	176	213	516
2FL	155	185	621

Acceleration Records at Seismic Isolation Building

http://image.search.yahoo.co.jp/search?rkf=2&ei=UTF-8&p

Verification of Seismic Isolation Effect Rikkyo Unv. Chapel Building, Tokyo 1918 completed, masonry Building, Rehabilitated by Seismic Isolation

Outside view

Inside view

Rikkyo Unv. Chapel Building

Verification of Seismic Isolation Effect Rikkyo Unv. Chapel Building

Performance of Seismically Isolated Buildings in Tokyo Area (Slide presented by Shimz Corp.) 6F 「方向 Y方向 4F Ο 4H2F Top of Colum 柱頭 RB 柱脚 Ground Surface 0 50 100 150 200 Maximum Accelerations(cm/s²) 150 Time History of Response Acc. -Ground Surface 100 -6F Maximum Acceleration of 6th floor 60gal 50 Acc. (gal) Top of Colum -50 Maximum Acceleration of ground surface approx. reduction=1/2 -100 **Ground Surface**

Seki M., UTCB Lecture note, May 2017, BRI, Japan

-150L

Lead Rubber Bearings

120gal

50

100

150

Time(s)

200

250

300

免震装置映像(免震層上にカメラを固定)

免震層の相対変位

55th AGM * "A Solid Past...A Successful Future"

2

Verification of Seismic Isolation Effect Isolation effectiveness in Strong Earthquakes

Seki M., UTCB Lecture note, May 2017, BRI, Japan
April 2016 Kumamoto Earthquake in Japan

Damage of Seismic Isolation Buildings Building Research Institute, Japan International Institute of Seismology and Earthquake Engineering (IISEE)

2017.3.30

Matsutaro Seki

平成28年熊本地震建築物被害調査報告(速報)

Quick Report of the Field Survey and the Building Damage by the 2016 Kumamoto Earthquake

平成 28 年 9 月

国土交通省 国土技術政策総合研究所

National Institute for Land and Infrastructure Management Ministry of Land, Infrastructure, Transport and Tourism, Japan

国立研究開発法人 建築研究所

Building Research Institute National Research and Development Agency, Japan

SEKI M., Lecture for IISEE, BRI, March, 2017

Hereafter, We call " **BRI**, **MLIT Report, 2016.9**"

Earthquakes exceeding JMA Seismic Intensity level 6 lower since 14 April 2016 21:26 JST (as of 04 August)

Date and Time	Hypocenter	Magnitude	JMA Seismic Intensity (Max)		
14 April 2016 21:26 JST (12:26 UTC)	Kumamoto Chiho of Kumamoto Prefecture	6.5	7		
14 April 2016 22:07 JST (13:07 UTC)	Kumamoto Chiho of Kumamoto Prefecture	5.8	6-		
15 April 2016 00:03 JST (14 April 2016 15:03 UTC)	Kumamoto Chiho of Kumamoto Prefecture	6.4	6+		
16 April 2016 01:25 JST (15 April 2016 16:25 UTC)	Kumamoto Chiho of Kumamoto Prefecture	7.3	7		
16 April 2016 01:45 JST (15 April 2016 16:45 UTC)	Kumamoto Chiho of Kumamoto Prefecture	5.9	6-		
16 April 2016 03:55 JST (15 April 2016 18:55 UTC)	Aso Chiho of Kumamoto Prefecture	5.8	6+		
16 April 2016 09:48 JST (00:48 UTC)	Kumamoto Chiho of Kumamoto Prefecture	5.4	6-		
http://www.jma.go.jp/jma/en/2016_Kumamoto_Earthquak					

16_Kumamoto_Earthquake.html SEKI M., Lecture for IISEE, BRI, March, 2017

Map of Seismic Intensity (JMA)

2016年04月16日01時25分 熊本県熊本地方 M7.1

http://www.data.jma.go.jp/svd/eew/data/suikei/2016 04160125 741/201604160125 741 1.html

Elastic Acceleration Response Spectrum (h=5%)

https://www.kz.tsukuba.ac.jp/~sakai/kmm_hk2_jp.htm

Elastic Velocity Response Spectrum (h=5%)

BRI, MLIT Report, 2016.9

Location of Seismic Isolation Buildings

BRI, MLIT Report, 2016.9

Summary of Investigated Buildings

表 3.1 調査建築物一覧(建築物A~Jは図 3.1と対応)										
建築物	クリア	上部	構造	免震材料 ^d	評定年 ^e	き書罹	最寄り ^f の			
(*は告示免震 ^a)	ランスb	形式°	階数		(建設年)	記録	震度(本震)			
A医療施設*	620mm	RC	4	RB, LRB	(2014)	0	6 弱			
B事務所*	650mm	S+SRC	8	RB, SnRB, USD	(2015)	0	6 強			
C共同住宅*	(未確認)	RC	13	RB, USD, LD	2007		6 強			
D事務所	600mm	S	5+B1	RB, ESD, USD	2012	0	5 弱			
E事務所	(未確認)	S	5+B1	RB, LRB, LSB, OD	2014		6 強			
F宿泊施設	450mm	RC	12	HRB, OD	2001		6 強			
G共同住宅 A棟	430mm	RC	14	HRB	1996		6 強			
B棟	430mm	RC	11	HRB	1996					
H共同住宅 E棟	600mm	RC	14	HRB	2000		6 強			
W棟	600mm	RC	14	HRB	2000					
I 共同住宅*	600mm	RC	15	RB, USD, LD	2006		6 強			
J倉庫	580mm	S+SRC	2	RB, LRB, ESD	2011	0	6 強			

a…平成12年建設省告示第2009号を満たすものとして設計された免震建築物をいう。

b…免震建築物と周囲に設けられた擁壁等との間の距離。免震建築物の地震時の動きを損なわないように設けられる。

c…RC:鉄筋コンクリート造、S:鉄骨造、SRC:鉄骨鉄筋コンクリート造

d…RB:天然ゴム系積層ゴム、HRB:高減衰積層ゴム、LRB:鉛プラグ入り積層ゴム、SnRB:錫プラグ入り積層ゴム、ESD:弾性 すべり支承、LSB:直動転がり支承、USD:U形鋼材ダンパー、LD:鉛ダンパー、0D:オイルダンパー

e…時刻歴応答解析を行い、指定性能評価機関等において性能評価を取得した年を指す。

f …図 3.1 に示す観測点 (▼印) のうち、それぞれの建築物に最も近い地点。A は K-NET 一の宮、D は K-NET 山鹿、G は K-NET 熊本、J は K-NET 大津、その他はすべて JMA 熊本である。

SEKI M., Lecture for IISEE, BRI, March, 2017

BRI, MLIT Report, 2016.9

A building: monitoring by scriber, Swelling of covering rubber

BRI, MLIT Report, 2016.9

A building: Damage of expansion joint

BRI, MLIT Report, 2016.9

A building: Sliding and Overturning of locker

SEKI M., Lecture for IISEE, BRI, March, 2017

BRI, MLIT Report, 2016.9

B building: monitoring by scriber, deformed steel damper

SEKI M., Lecture for IISEE, BRI, March, 2017

BRI, MLIT Report, 2016.9

C building: Location of isolators and dampers

BRI, MLIT Report, 2016.9

C building: Damage of supporting portion of lead plug damper

BRI, MLIT Report, 2016.9

C building: Deformed steel damper

BRI, MLIT Report, 2016.9

C building: Exfoliation of covering rubber

BRI, MLIT Report, 2016.9

D building: Slippage of sliding plate of elastic friction damper

BRI, MLIT Report, 2016.9

F building: Collision of oil damper and deformation of surrounding frame

BRI, MLIT Report, 2016.9

G building: Location of isolators

BRI, MLIT Report, 2016.9

G building: Movement of copy machine, overturning of petition wall

BRI, MLIT Report, 2016.9

G building: Damage of expansion joint between building and connecting corridor

BRI, MLIT Report, 2016.9

G building: Monitoring by scriber, Section of the building

BRI, MLIT Report, 2016.9

G building: Damage of connecting corridor (1st floor)

写真 5.7.2-39 外付け階段の被害状況①(階段南側)

BRI, MLIT Report, 2016.9

G building: Damage of connecting corridor (2nd floor)

BRI, MLIT Report, 2016.9

H building: Movement of cover sheet of pipe, movement of flexible equipment

BRI, MLIT Report, 2016.9

H building: Damage of expansion joint (ceiling)

BRI, MLIT Report, 2016.9

H building: Location of isolators and dampers

SEKI M., Lecture for IISEE, BRI, March, 2017

BRI, MLIT Report, 2016.9

H building: Damage of supporting portion of lead plug damper

BRI, MLIT Report, 2016.9

H building: Comparison of damage portion and no damage portion of steel damper

BRI, MLIT Report, 2016.9

H building: Damage portion of steel damper

BRI, MLIT Report, 2016.9

H building: Damage of the upper floor's slab

BRI, MLIT Report, 2016.9

Conclusions

- **1. Damage of Structural members**
- >Isolator and damper supporting member
- **Exterior stair**
- **Careful structural design should be done.**
- 2. Deformation of damper

Structural capacity and durability should be reconfirmed after earthquake.

3. Damage of expansion joint is inevitable.

4. Movement of building should be promoted by simple monitoring system in order to verify the structural design.

5. Site investigation of small size residential houses should be done. BRI, MLIT Report, 2016.9

Conclusions

1. The seismic isolation technology is innovative and effective solution for seismic damage mitigation.

2. This technology became spread stage in Japan and increase in the future.

3. But the careful structural design and construction work should be done.

Thank you for your attention.

Seki M., UTCB Lecture note, May 2017, BRI, Japan