Construction technologies in Japan

June 2017

Building Research Institute, Japan

Matsutaro SEKI

Contents

1. PC, Pca Buildings

2. High rise buildings

3. Conclusions

What is the Concrete?

http://kenken-pc.com/intro/

Property of concrete

What is the PC structure?

Concept

http://kenken-pc.com/intro/

Concrete Beam

Reinforced concrete Beam

Prestressed concrete beam

Prestressed Concrete

http://kenken-pc.com/intro/

Prestressed Concrete

http://kenken-pc.com/intro/

Posttensioned concrete

Posttensioned concrete

Posttensioning by jack

http://www.geocities.jp/ars_ksj/kanri/kanri1.html

What is the PCa structure?

Comparison of PC and RC structure (E-Defense)

Construction of PCa panel at factory

PRECAST PRESTRESSED CONCRETE BUILDINGS IN JAPAN

By. MASAYOSHI IMAMURA

P.S. Mitsubishi Construction Co., Ltd. Japan 2017-Cleveland, Ohio. USA.

- 1. Precast prestressed concrete momentresisting frame building
- 2. Building consisting of precast prestressed concrete and steel moment frames
- 3. Super high-rise precast prestressed concrete building

PRECST PRESTRESSED CONCRETE MOMENT-RESISTING FRAME BUILDING

2017-PCI Convention and National Bridge Conference

Building Summary

Owner : International University of Health and Welfare Design and Site Supervision :

P.S.Mitsubishi Construction Co.,Ltd.Construction: P.S.Mitsubishi Construction Co.,Ltd.Usage: UniversityLocation: Narita-city, Chiba prefecture, JapanFloors: 9-story with basementStructure: Precast Prestressed ConcreteStructural System: Moment-resisting frame

2017-PCI Convention and National Bridge Conference

Column (\mathbf{X}) (\mathbf{X}) Tie Hoop Main Reinforcement S13@100 (785MPa) 18-D38 (390MPa) 190 We was the sec 975 757.5 ∇2FL Main Reinforcement 1305 18-D38 (390MPa) (\mathbf{Y}) 217.5 d d 487.5 487.5 975 Top Cross Section Tie Hoop S13@100 (785MPa) _Tie Hoop 4630 4130 Splice sleeve for joint S13@100 (785MPa) 3325 975 757.5 (**Y**)-Splice Sleeve 217.5 (12U-X) ∇1FL 487.5 487.5 220 . 0 0 975 487.5 487.5 **Bottom Cross Section** 975

2017-PCI Convention and National Bridge Conference

"Lotus Root" unit (beam unit with beam-column joint)

2017-PCI Convention and National Bridge Conference

Beam unit for 13m span

Slab Element

2017-PCI Convention and National Bridge Conference

Construction Procedure

2017-PCI Convention and National Bridge Conference

Construction Procedure

2017-PCI Convention and National Bridge Conference

Introduction of prestressing force in the Longitudinal Direction in order to avoid the Hyper-static force in the transverse direction

2017-PCI Convention and National Bridge Conference

PC, Pca Structure

Summary

2017-PCI Convention and National Bridge Conference

MIXED USE OF PRECAST PRESTRESSED CONCRETE & STEEL MOMENT FRAMES

2017-PCI Convention and National Bridge Conference

Building Summary

Owner : NICHIA Corporation **Design and Site Supervision :** Takenaka Corporation, Osaka : Takenaka Corporation, Tokyo Construction **PC** Construction : P.S.Mitsubishi Construction Co., Ltd. Usage : Research Center Location : Suwa-city, Nagano prefecture, Japan : Two-story and basement Floors Structure : Precast Prestressed Concrete, **Reinforced Concrete and Steel Frames**

Excavation

2017-PCI Convention and National Bridge Conference

Precast Concrete Column Erection

Grout injection into joints at the column base

Precast Prestressed Concrete Beam installation

Grout injection into joints between beam units

Post-tensioning

Grout injection into beam-column connections

Steel deck plate arrangement and topping concrete cast

Precast Concrete Column Erection

Grout injection into joints at the column base

Precast prestressed concrete beam installation, and Grout injection into connections between beam units

Post-tensioning, and Grout injection into connections between beam units

Support removal

Large Steel Beam installation

2nd floor Precast Concrete Slab arrangement

Topping Concrete Cast

2nd story steel frame

SUPER HIGH-RISE PRECAST PRESTRESSED CONCRETE BUILDING

2017-PCI Convention and National Bridge Conference

Cleveland, Ohio. USA.

FUTAKO TAMAGAWA RISE II-a BLOCK

Building Summary

: Redevelopment Association Owner **Design and Site Supervision : Joint Venture of** Nikken Sekkei, RIA and Tokyu Sekkei Consultant : Kajima Corporation, Tokyo Construction PC Construction : P.S.Mitsubishi Construction Co.,Ltd. Usage : Office and Hotel Location : Setagaya-ku, Tokyo, Japan : 30-story superstructure and 2-story Floors underground Structure : Precast Prestressed Concrete and cast-in-place Reinforced Concrete Structural System : Seismic Isolation

FUTAKO TAMAGAWA RISE II-a BLOCK

2017-PCI Convention and National Bridge Conference

Cleveland, Ohio. USA.

FUTAKO TAMAGAWA RISE II-a BLOCK

2017-PCI Convention and National Bridge Conference

Cleveland, Ohio. USA.

Video

PC, Pca Structure

Super high rise building

Structural design of Dentsu Co.

2004.5.19 Ymanaka

Shiodome Area, Tokyo

Total area of Shiodome is $300,000 \text{ m}^2$.

Development scheme was planned by Tokyo metropolitan government

Future image of Shiodome

日本を代表する都市が、 東京のまん中「汐留」に誕生。 31ヘクタールの大空間に、 新しい夢を描きます。

沙留地区。古くは鉄道発祥の地として名を馳せたこの地が、 今、新たな都心として生まれ変わろうとしています。 截座・丸の内・器が間など主要市市地や臨海副都心に 羅教する観まれた立地条件に加えて、 鍵豊かな浜難宮思隔館園、東京ウォーターフロントの 絶景を望むことのできる最高のロケーション。 私たちはここに、世界的にも有質のウォリティと規模を 勝ることができる、かつてない発想からの 都市前泊を実現していきたいと考えています。

The vast 310,000-square-meter city of Shiodome will transfigure central Tokyo.

The reborn Shiodome, with its central location and close proximity to the waterfront, will be a prominent base for international business.

そこは、都市であり、 公園である。 訪れる人をもてなす、 のびやかな空間。

2002年の専開けより全プロジェクトが その姿を見せる2006年まで 「汐留」は細胞的に、次世代にふさわしい 都市と暮らしの提案をこめた 新しい都市づくりを行っていきます。

As city center and park, Shiodome will be extending a warm welcome to everyone.

In pursuit of the ideal environment for living, working and playing, Shiodome will continue to evolve until its final completion in 2006.

Jean Nouvel

Main building:

Total height: 210m " Crystal and rock"

+ Complex facility

Total floor area is $240,000 \text{ m}^2$

Outline of overall facilities

Outline of overall facilities

Main concept: **Safety** and **Stability**

1. Safety at the time of disaster using vibration control devices, dampers and steel concrete

2. 100 years sustainable building using central monitoring system and disaster prevention system

Structural Design

High capacity and high durability can be performed against wind, earthquake, etc..

Main concept: Shuttle elevator system

- 1. Combination of high speed direct elevator and local elevators
- 2. See-through elevators can be seen from inside and outside of building.

The process of creating boomerang shape

Trial plan, M.97

Given plan at kick-off meeting, July 97

Basic plan, M.98

Transition of the basic plan

triangle plan study

boomerang plan study

2.ブーメラン型案

L-shape plan study

3.L字型案

Communication with J. Nouvel by sketch drawings

Typical floor model:1/200

Study for facade

Basic concept of facade

Airflow window with ceramic printed glass creates transparency, view, privacy and saving energy Proposed by Jean Nouvel

Seki M., UTCB Lecture note, June 2017, BRI, Japan

Mock up for checking the gradation

Selenic printed glass Gray⇒White NCS5500, 5000,4000, 3500, 3000, 2500, 2000, 1500, 1000, 500 (10 grades)

Drawing of façade concept

design partner; Jean Nouvel (France)

Structural design

Structural Design Concept

Design concept

100 years sustainable building using

Structural technologies to assure the safety against earthquake and wind

Seki M., UTCB Lecture note, June 2017, BRI, Japan

Height of building VS Natural period

Seki M., UTCB Lecture note, June 2017, BRI, Japan

Building natural period VS Elastic response spectrum Response acceleration

→ Input earthquake force

Response displacement

→ Vibration displacement

Design concept and procedure

External design force

Analytical model

Design concept and procedure

Design criteria

		項目		設計クライテリア	設計目標値	
地上部	部 静的設計 鉛直荷重時 断面設計 柱軸力比			長期許容応力度以内 0.4以下	同左	
	設計用剪断力時 断面設計		断面設計	短期許容応力度以内 (PY0ダンパーのリンク材は降伏可とする)	同左	
		保有水平耐力時 柱軸力比		鉄骨柱;MIN(0.75, 1-λ/100, 0.25/λc2)以下 CFT柱;0.7以下	同左	
		(層間変形角=1/75)	全塑性ヒンジの 生じる箇所	梁端部、梁水平ハンチ端部 PYOダンパーのリンク部、1 階柱脚部	PYOダンパーのリンク部	
	地震外力	レベル1	応答層剪断力	設計用層剪断力以内	同左	
		(25cm/s)	層間変形角	1/200以内	1/300以内	
		レベル2	応答層剪断力	保有水平耐力以内	弾性限耐力以内	
	(50cm/s) 層間変形角		層間変形角	1/100以内	1/150以内	
		全塑性ヒンジ		梁端部、梁水平ハンチ端部	令て硝性限耐力的肉	
			生じる箇所	PYOダンパーのリンク部		
	耐風設計	レベル1	応答層剪断力	設計用層剪断力以内	同左	
	(100年) 層間		層間変形角	1/200以内	1/300以内	
		レベル2	応答層剪断力	弾性限耐力以内	同左	
	(500年) 層間変形的		層間変形角	1/100以内	1/150以内	
			全塑性ヒンジの 生じる箇所	PYOダンパーのリンク部	全て弾性限耐力以内	
地下部	静的設計	鉛直荷重時	断面設計	長期許容応力度以内	同左	
基礎		最大接地圧		980(kN/m2)、100(tf/m2) 以内 地下水位を考慮して浮き上がりが生じない		
		設計用煎新力時	新雨設計	短期許容応力度以内	同左	
		Ren 1939 Bird of	最大接地圧	1960(kN/m2)、200(tf/m2) 以内		
				終局耐力以内	1	
		保有水平耐力時 断面設計		耐震壁の剪断応力度は0.1Fc以内	同左	
				1階以下の床スラブは短期許容剪断応力度以内		
			最大接地圧	2940(kN/m2)、300(tf/m2) 以内		

Design force

•Natural period X direction (longitudinal) : 4.6 sec Y direction (Transverse) : 5.4 sec

•Total design base shear coefficient = 0.04

Design force for each direction

Design force: Y direction: Maximum shear force X direction: Minimum shear force

						(sec)
固有周期	Х	Y	60°	330°	300°	30°
1次	4.643	5.363	4.826	5.257	4.925	5.176
2次	1.627	2.098	1.838	2.042	1.876	2.013
3次	0.954	1.303	1.140	1.269	1.164	1.250
4次	0.667	0.930	0.817	0.907	0.835	0.890
	固有周期 1次 2次 3次 4次	固有周期X1次4.6432次1.6273次0.9544次0.667	固有周期XY1次4.6435.3632次1.6272.0983次0.9541.3034次0.6670.930	固有周期XY60°1次4.6435.3634.8262次1.6272.0981.8383次0.9541.3031.1404次0.6670.9300.817	固有周期XY60°330°1次4.6435.3634.8265.2572次1.6272.0981.8382.0423次0.9541.3031.1401.2694次0.6670.9300.8170.907	固有周期XY60°330°300°1次4.6435.3634.8265.2574.9252次1.6272.0981.8382.0421.8763次0.9541.3031.1401.2691.1644次0.6670.9300.8170.9070.835

1

Design base shear coefficient;

•Y direction :Co = 0. 080 •X direction :Co = 0. 040

Maximum response shear force (ton)

- ELCN40NSL2 50 50 ---0---TAFT52EWL2 €, 45 45 Ò - フレーム弾性限耐力 **M**O 🗕 保有水平耐力 40 40 **∆**♦0 ৵৾৾৽৽৽৾ ¢, 35 35 <u> </u> ΔŶ 30 30 $\downarrow \Delta \Theta$ I AP ∎⊿¤⊘ 匷 25 ლ 25 ₽ ¦Ω � 20 20 ÀÒ Δò 15 15 ΔÒ Δ 0 Ö (10 0. 10 Ô. 0 Δ Δ 5 Òè 4 5 0 Ó ٩ ا Ì. 0 0 Ż 0 0 0 50 100 150 200 0

X direction

 $Qi(\times 10^3 kN)$

Ydirection

Maximum response story drift angle

X direction

Y direction

Adopted technologies

Vibration control technology

Hybrid damper (PYO damper)
 Mega frame + Flexural damper
 Active tuned mass damper (AVICS-II)

Structural frame technology

Wing beam (Beam with horizontal haunch)
CFT column (High strength concrete)
Steel member without fireproof covering

Adopted technologies

Vibration control technology

Hybrid damper (PYO damper) Resistant static wind force and reduce earthquake force

Mega frame + Flexural damper Increase flexural stiffness for Y direction and reduce dynamic wind force

• Active tuned mass damper (AVICS-II) Improve the habitability

Vibration control concept of PYO damper

Over all construction site (August 2000)

Setting of PYO damper

Location of PYO dampers

Seki M., UTCB Lecture note, June 2017, BRI, Japan

Location of PYO dampers

Seki M., UTCB Lecture note, June 2017, BRI, Japan

Vibration control technology

- Hybrid damper (PYO damper)
 Resistant static wind force and reduce earthquake force
- Mega frame + Flexural damper Increase flexural stiffness for Y direction and reduce dynamic wind force
- Active tuned mass damper (AVICS-II) Improve the habitability

Mega frame + Flexural damper

Composition of Mega frame & flexural damper

Function concept of flexural damper Vibration control

Oil damper works due to the flexural deflection by strong earthquake and wind

Location of Mega frame & Flexural damper

PYO damper

Mega frame & Flexural damper

Oil damper

Mega frame & Flexural damper

Vibration control technology

- Hybrid damper (PYO damper)
 Resistant static wind force and reduce earthquake force
- Mega frame + Flexural damper
 Increase flexural stiffness for Y direction and reduce
 dynamic wind force
- Active tuned mass damper (AVICS-II) Improve the habitability

Tuned mass damper (AVICS-II)

Seki M., UTCB Lecture note, June 2017, BRI, Japan

Composition of AVIC-II

Over all view of ACICS-II

AC servo motor

Vibration control effect against Typhoon No.21 (2002.11)

Seki M., UTCB Lecture note, June 2017, BRI, Japan

Vibration control effect against Typhoon No.10 (2003.10.1)

Habitability evaluation

非制振

振

制

Vibration control effect against Sanriku Minami EQ (2003.5.26)

Structural frame technology

- Wing beam (Beam with horizontal haunch) Reduce the weight of steel and improve the plastic rotational capacity of beam
- CFT column (High strength concrete) Reduce the weight of steel member and reduce the fireproof covering
- Steel member without fireproof covering
 Exposed steel finishing without fireproof covering

Wing beam

Construction of wing beam

Used zone by wing beam

Structural frame technology

- Wing beam (Beam with horizontal haunch)
 Reduce the weight of steel and improve the plastic rotational capacity of beam
- CFT column (High strength concrete) Reduce the weight of steel member and reduce the fireproof covering
- Steel member without fireproof covering
 Exposed steel finishing without fireproof covering

CFT column

CFT Column

Structural frame technology

- Wing beam (Beam with horizontal haunch)
 Reduce the weight of steel and improve the plastic rotational capacity of beam
- CFT column (High strength concrete) Reduce the weight of steel member and reduce the fireproof covering
- Steel member without fireproof covering Exposed steel finishing without fireproof covering

Property of fire proofing steel (FR steel)

Seki M., UTCB Lecture note, June 2017, BRI, Japan

Completion : November 1st, 2002

Completion : November 1st, 2002

Completion : November 1st, 2002

Completion : November 1st, 2002

Atrium from the sky corridor

Completion : November 1st, 2002

station lobby (6,14,25,36F)

Tokyo Skytree

OCAJI

The world's tallest free –standing broad casting tower with a height of 634m

High rise towers in the world

Tokyo Skytree

Owner: Tobu Railway Co.

Structural Design: NikkenSekkei Co.

Construction: Obayashi Co.

Opening: May.2012

Photo: M.Seki

Photo: M.Seki

- 1. A truss structure with diagonal members
- 2. Circular high strength steel pipe
- 3. Pipes are simply welded together via branch joints.

- 1. High strength circular steel pipe of large cross section were used.
- 2. The maximum unit weight is 30 tons for transportation.
- 3. The thickest steel column at bottom is 2.3 m and 10 cm thickness.

- 1. The original diaphragm wall was used for the pile foundation.
- 2. This is used as a retaining wall to prevent sediment collapse during the construction and cut-off wall in area where ground water is predicted to occur, etc.

- 1. Knuckle walls are wall- type piles to which projection are attached like knuckles.
- 2. Knuckle helps fix the pile in the ground and greatly increases load bearing capacity.
- 3. Wall –type piles have great stiffness and are highly resistant to seismic horizontal forces.

- 1. The antenna gain tower at the top was constructed by the lift-up method.
- 2. Steel members were assembled at ground surface and raised inside the tower to a height of 634m.
- 3. The assembly was started before the construction of the central pillar.
- 4. The construction period could be reduced considerably.

1. The central tower was constructed in the void left after the antenna gain tower was raised.

Slip form

Feature 8

- 2. The slip form method was adopted in which concrete was continuously placed while the form was slipped upward.
- 3. A concrete cylinder could be constructed in a short time.

- 1. The vibration should be avoided because of the digital terrestrial broadcasting antenna.
- 2. A tuned mass damper (TMD) has been installed at the top of the antenna gain tower to control the vibration of the entire antenna gain tower.
- 3. The mass is tuned to dampen the vibration of the entire peak tower.

Tuned mass damper (TMD)

Tuned mass damper (TMD)

http://www.obayashi.co.jp/news/skytreedetail10_20101125_1 Seki M., UTCB Lecture note, June 2017, BRI, Japan

1. The central concrete cylindrical center pillar was installed at the center of the tower.

Piller

Feature 3

- 2. It reduces the seismic vibration of the entire tower.
- 3. It referred as the system for controlling seismic response with shimbashira at the center of pagoda, a traditional Japanese architecture.

Nikko Toshogu shrine, Japan

1999 World heritage

Five stories Pagoda

Precinct of Nikko Toshogu shrine

http://musen.server-shared.com/SINBASIRA-Midasi.html

Structure of shimbashira

Skytree Construction work (Video)

Seki M., UTCB Lecture note, June 2017, BRI, Japan

Conclusion

Japan is still challenging the innovative construction technologies for safety, sustainability, and labor-saving.

Thank you for your attention!