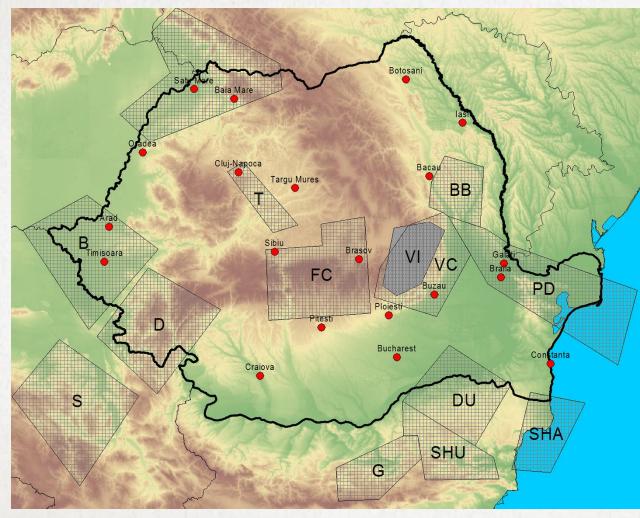


New developments in the evaluation of seismic hazard for Romania

Florin Pavel

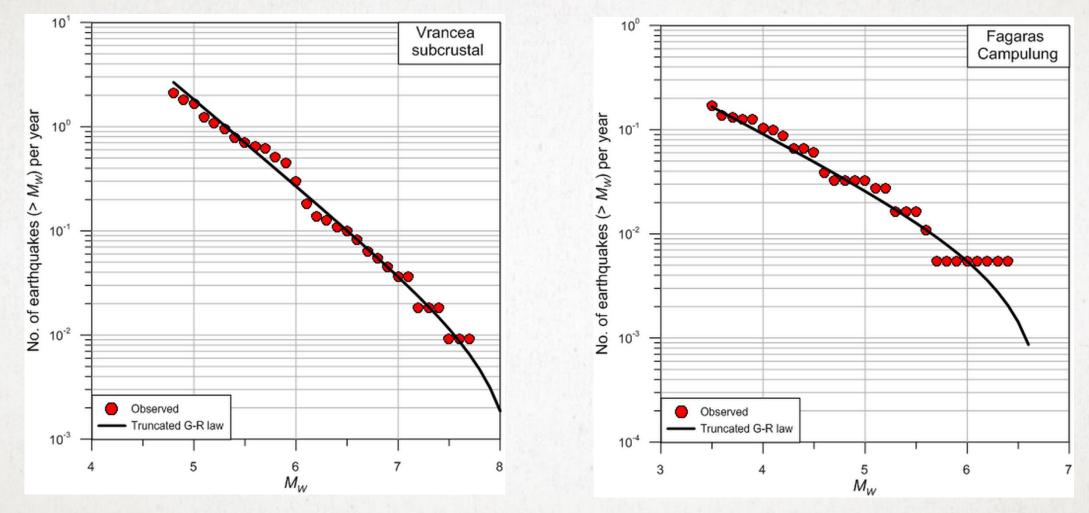

Seismic Risk Assessment Research Center

CONTENTS

- Introduction
- Seismicity of Romania
- Ground motion models
- Evaluation of seismic hazard
- Comments
- Conclusions

INTRODUCTION

- BIGSEES national research project (2012 2016) redefinition of seismic action for Romania according to Eurocode 8 provisions
- Project team:
 - National Institute of Earth Physics (INFP)
 - Technical University of Civil Engineering Bucharest (UTCB)
 - Building Research Institute (INCERC)
 - Aedificia Carpati


• Seismicity of Romania (INFP):

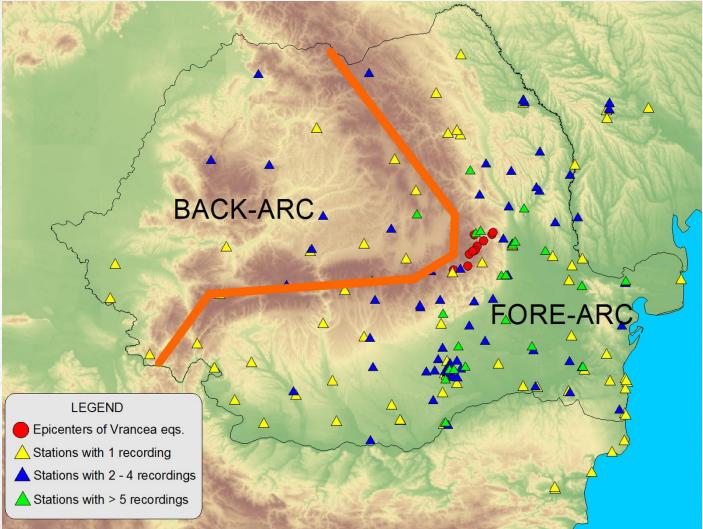
Vrancea subcrustal seismic source (M_{max} > 8.0)

- 13 crustal seismic sources − some can generate earthquakes with $M_{max} \ge 7.0$

- Seismic moment release:
 - Vrancea seismic source ≈ Southern California (Wenzel et al. 1998)
 - Vrancea seismic source (XXth century) ≈ 3 x Italy (all seismic sources XXth century)
 - Vrancea seismic source (XXth century) ≈ 0.6 x Vrancea seismic source (XIXth century)
 - Vrancea seismic source (1839-1939) ⇒ M_w ≈ 7.6 (only from earthquakes with M_w ≤ 7.1)

- Vrancea earthquake of Nov. 1940 (Mw = 7.7):
 - Largest intermediate-depth earthquake in Europe (XXth century)
 - 4th largest earthquake in Europe in XXth century (after earthquakes in Turkey, Portugal, Spain - deep)
- Seismic moment release rate XXth century:
 - 13 crustal seismic sources $\approx 1/6$ Vrancea seismic source
 - 80% of Vrancea moment release earthquakes of 1940
 (Mw = 7.7) and 1977 (Mw = 7.4)

New developments in the evaluation of seismic hazard for Romania

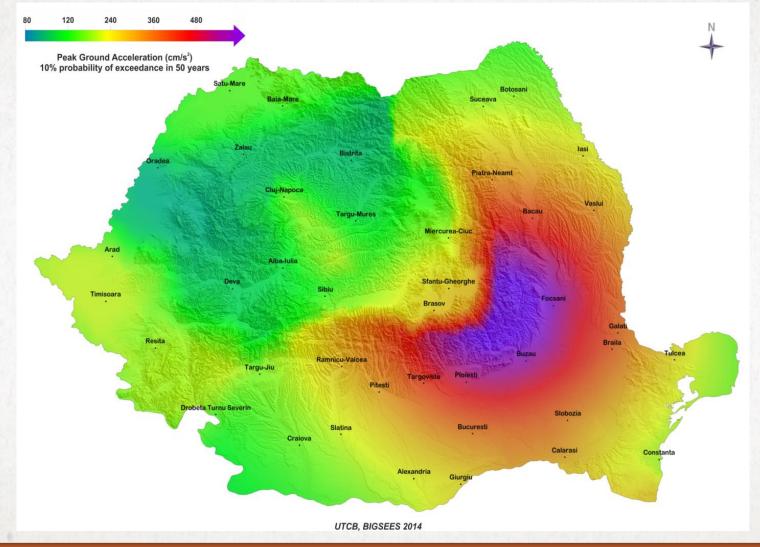

7

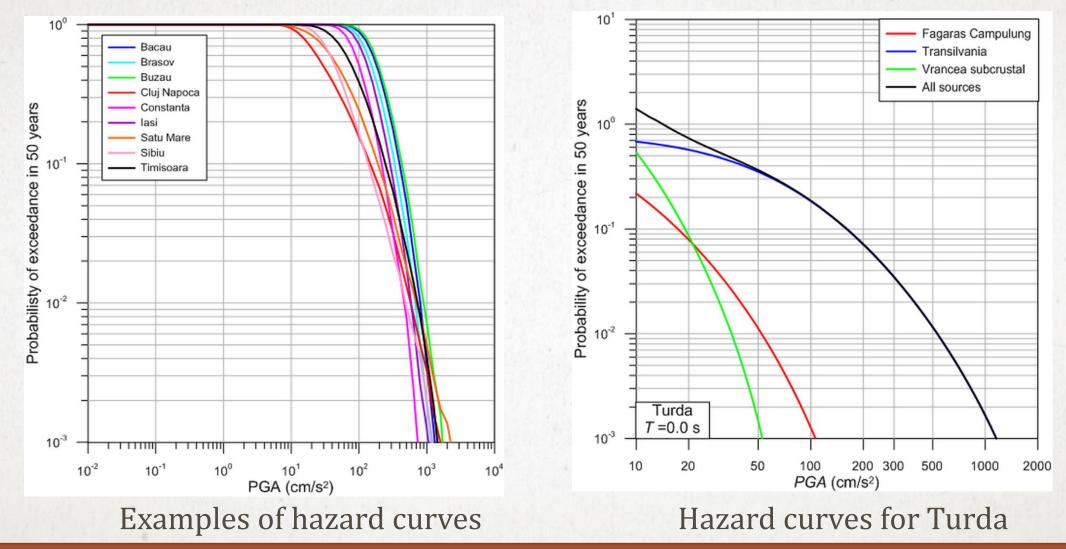
 GMPEs (ground motion prediction equations) – describe ground motion amplitude (median + std. deviation)

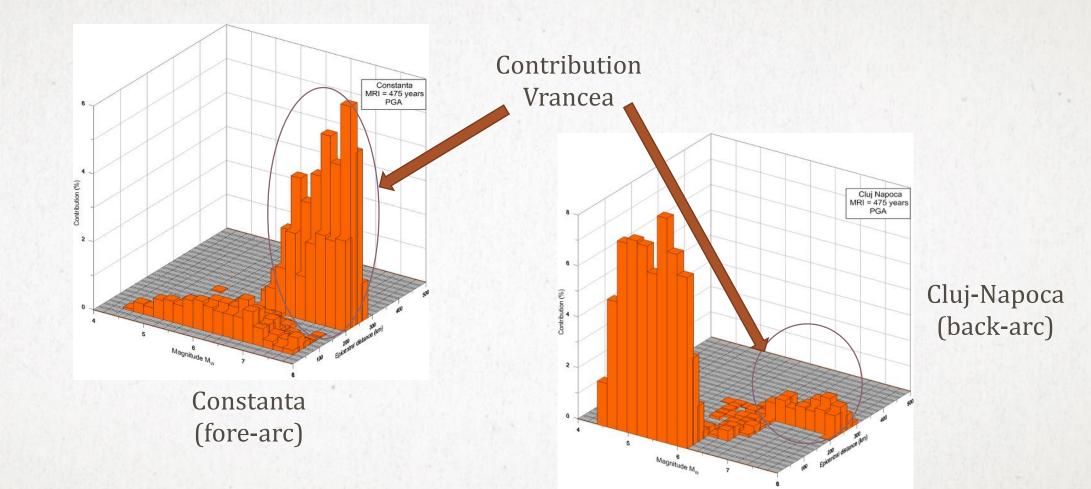
 $\ln Y = c_1 + c_2 M + c_3 \ln (R + c_4) + c_5 R + c_6 f(source) + c_7 f(soil)$

- Parameters of GMPEs:
 - earthquake magnitude
 - source-site distance
 - soil conditions
 - other parameters (style of faulting, dircectivity effects, hanging-wall effects, etc.)

- Testing of GMPEs key step for "reliable" evaluation of seismic hazard
- Testing of GMPEs (e.g. Scherbaum et al, 2004, Delavaud et al, 2012, Kale & Akkar, 2013):
 - Vrancea seismic source
 - Fore-arc region (in front of Carpathian Mts.)
 - back-arc region (Tranylvania)
 - crustal seismic sources
- Testing of GMPEs PSHA weighing scheme (Pavel et al. 2014)

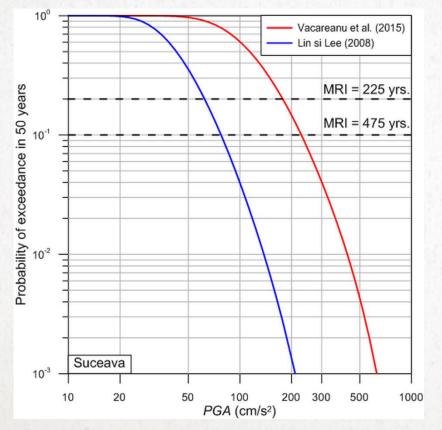


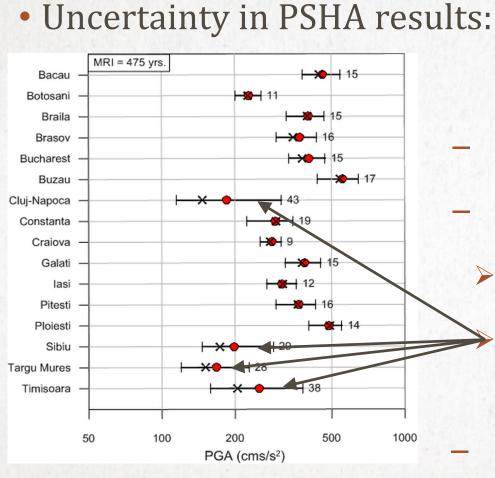

Fore-arc		Back-arc		Crustal	
GMPE	Weighing factors	GMPE	Weighing factors	GMPE	Weighing factors
VEA15	0.40	VEA15	0.60	CF08	0.45
YEA97	0.25	AB03	0.20	I08	0.40
ZEA06	0.25	YEA97	0.10	AB10	0.15
LL08	0.10	ZEA06	0.10		

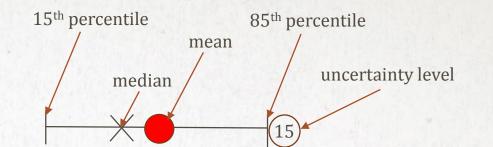

VEA15 - Vacareanu et al. (2015) GMPE developed in BIGSEES project for Vrancea

subcrustal seismic source

- Probabilistic seismic hazard assesment (PSHA):
 - Basic methodology Cornell (1968) and McGuire (1976)
 - PSHA employs logic-trees epistemic uncertainty
 - Main result probability of exceedance (usually median) of a ground motion parameter hazard curve
 - Other results: uniform hazard spectra (UHS), hazard disaggregation (contribution of magnitudes and source-site distances)

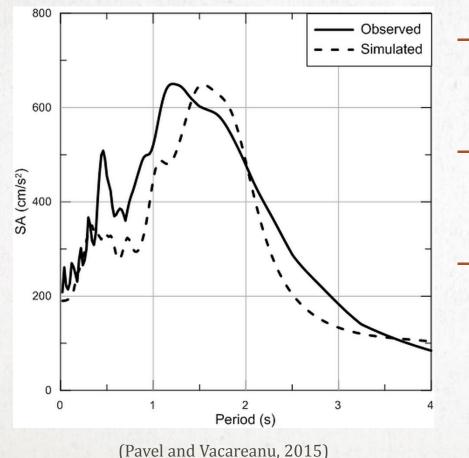



Hazard disaggregation (PGA)


- Vrancea subcrustal seismic source very active and concentrated seismicity
- Bucharest affected by 9 earthquakes with Mw ≥ 7.0 in the past 200 years
- Crustal seismic sources rather weak activity, but they can influence considerably the seismic hazard levels (especially low exceedance probabilities)
- Earthquake of Nov. 2014 (Mw = 5.7, h = 40 km) near Marasesti – PGA ≈ 0.28 g (Odobesti, d ≈ 15 km)

• Selection and testing of GMPEs – critical for a reliable evaluation of seismic hazard

- Validation of PSHA results:
 - ground motion data (few recordings from large earthquakes)
 - intensity data unreliable
 - Monte Carlo method
 - ground motion simulation



- PSHA results median values
- Uncertainty (Douglas et al. 2014):
 - small fore-arc (Vrancea)
 - larger (≈ 3 times) back-arc (crustal sources)

"Is the median hazard level adequate for back-arc area?"

• Simulation of strong ground motions:

- More accurate representation of site-specific seismic action
 - Difficult to use due to lack of deep soil profiles (> 200 m)
 - Observed and simulated response spectra for INCERC station Bucharest – similar (1977 Vrancea earthquake, soil profile depth ≈ 1.5 km)

CONCLUSIONS

- **BIGSEES** research project redefinition of seismic action for Romania according to Eurocode 8 provisions
- Seismicity of Romania Vrancea subcrustal seismic source + 13 crustal seismic sources
- Seismic hazard contributor:
 - Vrancea southern and eastern Romania
 - crustal (local) seismic sources + Vrancea (limited, mostly long periods) – Transylvania

CONCLUSIONS

- Future research in **BIGSEES** project:
 - Validation of PSHA results:
 - Monte Carlo methods
 - simulation of ground motions (if deep profiles are available)
 - Quantification of associated uncertainty in PSHA results (all sites)
 - Evaluation of nonlinear soil effects (southern Romania)

SELECTED REFERENCES

- Cornell CA (1968) Engineering seismic analysis. Bulletin of the Seismological Society of America 58: 1583 – 1606
- Delavaud E, Cotton F, Akkar S, Scherbaum F, Danciu L, Beauval C, Drouet S, Douglas J, Basili R, Sandikkaya MA, Segou M, Faccioli E, Theodoulidis N (2012a) Toward a ground-motion logic tree for probabilistic seismic hazard assessment in Europe. Journal of Seismology 16(3): 451-473.
- Douglas J, Ulrich T, Bertil D, Rey J (2014) Comparisons of the ranges of uncertainty captured in different seismic-hazard studies. Seismological Research Letters 85: 977-985.

SELECTED REFERENCES

- Kale Ö, Akkar S (2013) A new procedure for selecting and ranking ground-motion prediction equations (GMPEs): the Euclidean distance-based ranking (EDR) method.
 Bulletin of the Seismological Society of America 103(2A): 1069-1084.
- Pavel F, Văcăreanu R, Arion C, Neagu C (2014) Probabilistic seismic hazard assessment for Romania. Part I: selection of GMPEs. Proceedings of the 5th National Conference on Earthquake Engineering and 1st National Conference on Earthquake Engineering and Seismology, pp. 213-220.
- Pavel F, Văcăreanu R (2015) Assessment of the ground motion levels for the Vrancea (Romania) November 1940 earthquake. Natural Hazards DOI: 10.1007/s11069-015-1767-x.

SELECTED REFERENCES

- Scherbaum F, Cotton F, Smit P (2004) On the use of response spectral-reference data for the selection and ranking of ground-motion models for seismic-hazard analysis in regions of moderate seismicity: the case of rock motions. Bulletin of the Seismological Society of America 94(6): 2164-2185.
- Văcăreanu R, Radulian M, Iancovici M, Pavel F, Neagu C (2015). Fore-arc and back-arc ground motion prediction model for Vrancea intermediate depth seismic source. Journal of Earthquake Engineering 19(3): 535-562.
- Wenzel F, Achauer U, Enescu D, Kissling E, Russo R, Mocanu V, Musacchio G (1998) Detailed look at final stage of plate break-off is target of study in Romania. EOS Transactions American Geophysical Union 79(48): 589-600.