Challenges of earthquake resistant design for buildings in Bucharest

Viorel Popa
History of design regulations

1940 Major seismic event (M 7.7, 150 km depth) >> some seismic design rules were introduced in day to day practice

- 1977 Major seismic event (M 7.4, 109km depth)

- 1980 New seismic design code P100-80
- 1986 Large seismic event (M 7.1, 133km depth)
- 1990 Large seismic event (M 7.1, 133km depth, M 6.9, 91 km)

- 1992 New seismic design code P100-92
- 2006 New code based on EN 1998-1, revised in 2013

www.utcb.ro
Existing housing units in Bucharest

Bucharest

- 1963 – 1977

3303 buildings (3-11 stories) were built in Bucharest

- Concrete frames
- Concrete, lightly reinforced, shear walls
- Prefabricated – large panels
- Soft-storey – most vulnerable

Existing housing units in Bucharest
Earthquake of March 1977

Collapse of 28 medium rise buildings built before 1940
(Common typology for old buildings)
Earthquake of March 1977

Collapse of 3 concrete buildings built after 1950
(picture: soft story buildings, still under use)
Seismic design practice
Seismic design code

P100-1/2013

- Compulsory for entire RO territory, enforced RO Gov’t
- Similar to EN1998-1 (procedures, format, symbols) with specific recommendations for Romania (seismic action, capacity design, detailing rules)
- Performance based approach – 2 performance objectives
- Capacity design method
Fundamental requirements

MRI = 40 years
(22% probability of exceedance in 10 years)

MRI = 225 years
(20% probability of exceedance in 50 years)

Damage control

Check stiffness (drift limitation 0.5%; 0.75%; 1.0%)

Life Safety

Check strength, drift (2.5%); ductility measures

Normal importance buildings
Importance classes

• P100-1 classifies the structures into IV importance classes
• Seismic requirements dependent on consequences of failure
• Classification similar to ASCE 07

• Classification based on building height
 • $\geq 28m$ – importance class II, 20% increase of the PGA
 • $\geq 45m$ – importance class I, 40% increase of PGA
Ductility classes

DC High – large reduction factors (2 .. 6.75), capacity design with severe local ductility conditions

DC Medium – medium reduction factors (1.50 .. 4.75) capacity design with average local ductility conditions

DC Low – small reduction factors (1.50 .. 2) no capacity design, no special detailing conditions (valid for $a_g < 0.1g$)
Concrete buildings

Key objectives (DCH):

• Ductility DCH

• Lateral stiffness for damage limitation

• Lateral strength to control displacement demand
Concrete buildings

- Inner concrete core with concrete frames
- Inner concrete core with flat slabs and outer frames
- Inner concrete core with flat slabs
- Concrete coupled shear walls
- Concrete frames
Concrete buildings

- Inner concrete core with concrete frames
- Inner concrete core with flat slabs and outer frames
- Inner concrete core with flat slabs
- Concrete coupled shear walls
- Concrete frames

www.utcb.ro
Detailing for ductility

Min. 0.3% vertical reinforcement

Min. 0.3% vertical reinforcement
Min. 0.25% vertical web reinforcement
Min. 0.5% vertical reinf. in boundary elements
Detailing for ductility
Concrete buildings

• Beam sections – drift limitation criteria (0,5% or 0,75% for service eq. and 2,5% for design eq.)

• Columns sections
 • Ductility \(N < 0.45A_g f_{cd}\) or \(N < 0.55A_g f_{cd}\) (if rotational ductility is checked by calculation)
 • Drift limitation (0,5% or 0,75% for service eq. and 2,5% for design eq.)

• Walls sections
 • Shear strength of concrete section: \(V < 0.15b_w l_w f_{cd}\)
Concrete buildings

- Concrete 32-48 MPa – average compressive strength
- Steel 435 MPa
- Monolithic structures
 - Columns: rectangular, square sections – 500 mm to 1000 mm width, longitudinal reinforcement ratio 1-2%
 - Shear walls: 300-600 (800) mm thickness, with diagonally reinforced coupling beams
 - Spacing of transversal reinforcement in plastic region 100 mm (for columns, beams, shear walls boundary elements)
Challenges in seismic engineering
Acceleration response spectrum

Design peak ground acceleration

\[0.10g \text{..} 0.40g\]

\[\beta(T)\]

\[\beta_0 = 2.5\]

\[T_c = 1.6s\]

\[T_c = 1.0s\]

\[T_c = 0.7s\]

\[T (s)\]

\[\beta(T)\]

\[0,00\]

\[1,00\]

\[2,00\]

\[3,00\]

www.utcb.ro
Acceleration response spectrum

- $T_B = 0.2T$

- Cluj-Napoca
- Deva
- Oradea

- $T_c = 0.7s$
- Tg. Mureș

- Ploiești
- București
- Craiova
- Timișoara

- $T_c = 1.0s$
- Focșani

- $T_c = 1.6s$
- Iași
- Constanța

www.utcb.ro
Base shear coefficients - Bucharest

Sd/g RC shear walls
q (R) = 5

F_b = 0.22W for q=5
F_b = 0.37W for q=3
F_b = W for q=1!
Large lateral displacement

- Design for large lateral displacement demand: > 60 cm under design earthquake (> 80 cm for buildings over 45 m in height)
 - Limited international experience
 - High rotational ductility demand (beams (θ>0.03) and coupling beams (θ>0.06))

- Design for ductility, protection of non-structural elements

- Increase damping – vibration control
 - Limited option for base isolation
Large lateral displacements

- Stiffness increase >> base shear force increase
- High additional structural cost necessary to limit the lateral displacement
- Shear strength and hysteretic behaviour of thick concrete walls (>40cm going up to 100cm with 3-5 curtains of reinforcement)
- Punching strength of slabs under high rotations
Ductility of shear walls

• Chilean experience
Acceleration response spectrum

- Chilean experience - Maule 2010 Eq.,
Ductility of shear walls

- Chilean experience - Maule 2010 Eq.,
- Vast majority of buildings designed for soil type II
- Spectral displacement values lower than 30 cm
Ductility of shear walls

• Chilean experience
• Before Maule 2010 Eq., followed ACI 318 recommendations, ch. 21, except for confinement of the boundary elements
• Confinement provisions were included after the 2010 earthquake

Ductility of shear walls

• ACI 318, Ch. 21

Ordinary boundary element

- $l_{bc} \geq \max (c - 0.1l_e, c/2)$
- $h_e = \text{max spacing of hoop or tie legs } \leq 14 \text{ in.}$
- hoop sets @ $s \leq 8 \text{ in.}$

Special boundary element

- $l_{bc} \geq \max (c - 0.1l_e, c/2)$
- $h_e = \text{max spacing of hoop or tie legs } \leq 14 \text{ in.}$
- hoop sets @ $s \leq \min \left(\frac{b}{3}, \frac{14 - h_e}{3} \right)$
- 6 in.
- 6 in.

Hoops/crossties also satisfy ACI 318 § 7.10.1

Standard hooks engaging vertical edge reinforcement

Straight or standard bar offset, anchored $\geq l_{db}$ or l_{dr} in confined core

$A_{sh} = 0.09 b c / f_y t$

www.utcb.ro
Ductility of shear walls

- Romanian practice: thick concrete walls with large flanges
- Detailing for ductility
- Lacking information about rotation capacity and shear strength
- Difficult to test on real scale models
Ductility of shear walls

- Romanian practice
- Horizontal bars - anchored in the confined area of the boundary element
- Ties - in the overlapping regions for horizontal reinforcement, as prescribed by EC2.
Ductility of shear walls
Ductility of shear walls

• C. Motter, J. Wallace - 16 WCEE 2017

• Quasy static test, simulating a 10 story building (applied moment, axial and shear)

• $N=0.053A_{f_c}$

• 1.5% rotational capacity
Ductility of shear walls

Prevent brittle failure: Unexpected failure of Type S2 mechanical couplers caused by faulty fitting (rebars cut on-site from a shear wall reinforcement cage)
Large lateral displacement

• Design for large lateral displacement demand: > 60 cm top disp. under design earthquake (> 80 cm top disp. for buildings over 45 m in height)
 • Behaviour of non-structural elements
 • Glass curtain walls (solutions from western Europe – little experience with strong eq.)
 • Masonry partition walls (residential buildings)
 • Roof systems for commercial buildings
Sensitive non-structural components

Emergency hospital building - reliable structure but sensitive non-structural elements
Sensitive non-structural components

1% lateral drift – damage level
Sensitive non-structural components

Van, Turkey 2011
Sensitive non-structural components

Van, Turkey 2011

www.utcb.ro
Sensitive non-structural components

Van, Turkey 2011
Sensitive non-structural components

Van, Turkey 2011 – heavy damage in the ground floor
Sensitive non-structural components

• Rather new buildings
• Concrete shear wall structures
• Limited structural damage
• Extended non-structural damage (partitions, pipes, wiring, doors and windows)
• Evacuated, listed for demolition
Limitations of structural analysis

- Structural drawings and site inspection for confirmation
- Material (concrete) tests
- Acceleration time-histories in nearby stations (two ground motions), including directions

- Static linear analysis, static nonlinear analysis, time-history nonlinear analysis
Limitation of structural analysis

\[d_A^x = 70\text{mm} \]

\[d_B^x = 58\text{mm} \]
Limitation of structural analysis

• Buildings have suitable lateral strength and deformation capacity
• Suitable strength, higher than required by Turkish earthquake standard (lateral overstrength of around 2.0)
• 1% lateral drift - most severe earthquake loading scenario

• All the assessment methods converged to a similar positive conclusion regarding the seismic vulnerability of the building.
• Seismic assessment methods could not predict the extensive damage sustained by the masonry partitions in the ground floor.
Limitation of structural analysis

- Structural analysis methods have certain limitations
- Structural lateral displacement cannot always describe local damage level (although displacement is a very convenient and reliable engineering parameter)
- Structural analysis should not overshadow engineering common sense or past experience
Limitation of structural analysis

- Refined structural analysis alone can not result in safe buildings

- Advanced structural analysis methods:
 - Who should be able to use in practical design?
 - Is additional certification of the design offices necessary?
 - How advanced analysis methods should be positioned with respect to the conventional linear elastic ones?
Quality in design and production

• Involvement of construction industry in research, development and good practice standardization
• Almost no involvement of insurance industry in quality assurance
• Weak involvement of the government in research and development in construction
Bucharest resilience to earthquakes

- 2011 Christchurch, M6.3 Eq. - 185 fatalities and 100,000 damaged homes
- 1,100 commercial buildings (80% of the central business district) subsequently demolished
- 6,000 businesses vacated the district
- 30 billions USD - total replacement cost
- 2017 Kamikoura Eq - caused a less severe but similar outcome in Wellington
Bucharest resilience to earthquakes

• Initial construction costs vs. life time costs for buildings
 (design for DCH - large behaviour factors (q (R) = 5...6))

• Direct pressure from developers to reduce structural costs
 (structural costs 120-150 €/m², total building costs 500-1000 €/m², expected life-cycle costs ? €/m²), especially in the residential segment

• Lack of efficient tools to estimate life-cycle costs

• Lack of education of end users to ask for resilient structures
Construction cost break-down

- Taghavi and Miranda (2003)

- Bucharest – office buildings – structural cost <30% total construction cost
Economic life in Bucharest

• Income (GDP per head) more than double than the national income – largest ratio in the EU together with Warsaw

• High share of working – age population (20-64 years of age) – 68 % - by far the largest in the EU

• 15000 residents / km² in the first 5 km from the city center

A strong earthquake is likely to generate a severe drop of the economic activity in Romania
Main concerns

• Higher attention building quality, both to structural and non-structural components
 • Large displacements demands
 • High non-linear deformation of structural elements
 • Severe damage of non-structural components
• Structural designers, consultants - uniform and fair application of codes – not to distort the economic competition of the design market
Thank You!

www.utcb.ro