

Site classification and definition of seismic actions in the revision of EC8

Kyriazis Pitilakis Aristotle University Thessaloniki, Greece

Website: http://users.auth.gr/~kpitilak/ http://sdgee.civil.auth.gr

Contents

- Present situation of EC8 Part1
- Improved site classification and design response spectra in the present EC8
- New AUTH proposal for site classification, amplification factors and design response spectra
- Aggravation factors to account for basin and valley effects
- Comments on the application of EC8 Part 1 in Romania

Related publications

- **Riga E., Makra K., Pitilakis K., 2016**, "Aggravation factors for seismic response of sedimentary basins: A code-oriented parametric study", Soil Dynamics and Earthquake Engineering, Special Issue of Invited Papers at the 6th International Conference on Earthquake Geotechnical Engineering (6ICEGE), Christchurch, New Zealand, 2-4 November 2015, vol. 91, pp. 116-132, DOI: 10.1016/j.soildyn.2016.09.048.
- **Pitilakis K., Riga E., Anastasiadis A., 2013**, "New code site classification, amplification factors and normalized response spectra based on a worldwide ground-motion database", Bulletin of Earthquake Engineering, 11, 4, 925-966, DOI: 10.1007/s10518-013-9440-9.
- **Pitilakis K., Riga E., Anastasiadis A., 2012**, "Design spectra and amplification factors for Eurocode 8", Bulletin of Earthquake Engineering, 10, 5, 1377-1400, DOI: 10.1007/s10518-012-9367-6.

Wave propagation Seismic actions

H = Source * Path * Site effects

Site effects 1

Amplification of the amplitude of ground motion due to impedance effects on the surface layer

Site effects 2

Multiple reflections and refractions of seismic waves at the shallow soil strata of lower velocity: Amplification of the amplitude at the fundamental mode of soil profile

Site effects 3

Creations of multiple refracted and reflected waves propagating with different frequencies: Further amplification in a large spectrum of frequencies

Thessaloniki

1D propagation of SH waves and lateral propagation of diffracted surface waves SW

Research Unit of Soil Dynamics and Geotechnical Earthquake Engineering

8

8

Site amplification

9

SHARE

- Harmonization of methodologies used for seismic hazard assessment in Europe
- Probabilistic seismic hazard assessment (PSHA) for rock-site conditions, for different return periods (72 – 5000 years) and for a grid of 10km size (120,000 points) covering the whole Europe.
- Intensity measures: PGA, spectral acceleration Sa (0.1-10sec)
- Uncertainties are accounted for through a "logic tree" approach.
- > The ultimate goal is to contribute to an update of the current EC8.

Project information: www.share-eu.org Data access: www.efehr.org

SHARE Partners

> 18 universities and research centers from 12 European countries

Seismicity in Europe

Earthquakes in Europe compiled for the SHARE European Earthquake Catalog (SHEEC) covering the period 1000 - 2007 with moment magnitudes Mw≥3.5

SDGEE Research Unit of S

Seismic zones in Europe

Uncertainties - Logic tree

Types of seismic sources Logic tree structure for each seismic source zone model specification zone based 25 v_0 - β pairs M_{max} GMPE in areas of ASZ and FSZ zoneless .6 fault SZ and areal background SZ zone based areal SZ zoneless weights as examples only

Ground Motion Prediction Equations

New Seismic Hazard Map (PGA) : Bedrock Vs>800m/s Return Period = 475 years

Return Period = 475 years

Period = **Sa (1.0)**

Area Source Branch

Return Period = 475 years

Period = **Sa (2.0)**

www.share-eu.org http://www.efehr.org

Area Source Branch

Return Period = 475 years

Period = **Sd (0.2)**

Return Period = 475 years

Period = **Sd (1.0)**

SDGEE

Return Period = 2475 years

Period = **PGA**

Uniform Hazard Spectra for Thessaloniki, Greece

Bedrock Vs>800m/s

http://www.efehr.org

SDGEE

Uniform Hazard Spectra for Bucharest

Bedrock Vs>800m/s

http://www.efehr.org

SDGEE

EC8-Part1 Seismic actions Present situation and needs

Soil and site classification in EC8

	Description of stratigraphic profile	Parameters		
Ground type		V _{s,30} (m/s)	N _{SPT}	Su (kPa)
A	Rock or other rock-like geological formation, including at most 5 m of weaker material at the surface.	>800	-	-
В	Deposits of very dense sand, gravel, or very stiff clay, at least several tens of meters in thickness, characterized by a gradual increase of mechanical properties with depth.	360-800	>50	>250
с	Deep deposits of dense or medium-dense sand, gravel or stiff clay with thickness from several tens to many hundreds of meters.	180-360	15-50	70-250
D	Deposits of loose-to-medium cohesionless soil (with or without some soft cohesive layers), or of predominantly soft-to-firm cohesive soil.	<180	<15	<70
E	A soil profile consisting of a surface alluvium layer with Vs values of type C or D and thickness varying between about 5 m and 20 m, underlain by stiffer material with Vs>800 m/s.			
S1	Deposits consisting, or containing a layer at least 10 m thick, of soft clays/silts with a high plasticity index (PI>40) and high water content.	<100 (indicative)	-	10-20
S2	Deposits of liquefiable soils, of sensitive clays, or any other soil profile not included in types A – E or S1.			

Is $V_{s,30}$ appropriate for site classification?

- Advantages of V_{s,30}:
 - Simple and effective in practice
 - Requires few data: a simple N-SPT of 30m long or less is maybe enough!
- Disadvantages of V_{s,30}:
 - It is not a fundamental (neither a geotechnical) parameter
 - Could mislead grossly in different cases like: deep low stiffness deposits lying on much harder rock; sites with a shallow velocity inversion; sites with velocity profiles which are not monotonically increasing with depth etc

$$V_{s,30} = \frac{30}{\sum_{i=1,N} \frac{h_i}{V_i}}$$

Vs Measurements – Methods and Data

A Sandıkkaya,*S.Akkar, & P-Y Bard, 2013, "A Nonlinear Site-Amplification Model for the Next Pan-European Ground-Motion Prediction Equations"

Poor and loose data distribution for hard-rock conditions and PGA>0.20g The bulk of the data are within 200 m/s ≤V_{S30} ≤ 700 m/s and PGA<0.20g SDGEE

Is $V_{s,30}$ appropriate for site – soil classification?

The answer is yes but only under certain conditions. For example very shallow and very deep, rather soft soil profiles should be excluded of the use of V_{s30}

Should be certainly complemented with a detailed geotechnical – geological description including the depth to the seismic bedrock (Vs>800m/s) and with several geotechnical parameters like SPT, CPT, Su, PI.

In any case a very useful parameter to describe the site amplification particularly in low intensities (linear elastic range of ground response) is the fundamental period of the site To

Normalized elastic response spectra (EC8)

Horizontal elastic response spectrum (EC8)

Vertical elastic response spectrum (EC8)

Research Unit of Soil Dynamics and Geotechnical Earthquake Engineering

Amplification factors and elastic response spectra in EC8

Type 1 Spectrum - M_s>5.5

Ground Type	S	T _B (s)	T _c (s)	T _D (s)		
A	1.00	0.15	0.40	2.00		
В	1.20	0.15	0.50	2.00		
С	1.15	0.20	0.60	2.00		
D	1.35	0.20	0.80	2.00		
E	1.40	0.15	0.50	2.00		
Type 2 Spectrum - M _s ≤5.5						
	Type 2 Sp	pectrum - N	/I _s ≤5.5			
Ground Type	S	Dectrum - N T _B (s)	Λ _s ≤5.5 _{T_c(s)}	T _D (s)		
Ground Type A	Type 2 S <i>S</i> 1.00	Dectrum - N T _B (s) 0.05	Λ _s ≤5.5 <i>T_c (s)</i> 0.25	T _D (s) 1.20		
Ground Type A B	Type 2 Sr <i>S</i> 1.00 1.35	Dectrum - Ν <i>T_B(s)</i> 0.05 0.05	A_s≤5.5 <i>T_c(s)</i> 0.25 0.25	T _D (s) 1.20 1.20		
Ground Type A B C	S 1.00 1.35 1.50	Dectrum - N T _B (s) 0.05 0.05 0.10	A _s ≤5.5 <i>T_c(s)</i> 0.25 0.25 0.25	T _D (s) 1.20 1.20 1.20		
Ground Type A B C D	Type 2 Sr S 1.00 1.35 1.50 1.80	T _B (s) 0.05 0.05 0.10	∧_s≤5.5 <i>T_c(s)</i> 0.25 0.25 0.25 0.30	T _D (s) 1.20 1.20 1.20 1.20		

Needs for revision

Site classification and amplification factors are based on very few data (available almost 20-25 years ago!) and should be at least upgraded and adapted to the acquired numerous new data, rich scientific knowledge and the exponential increase of available strong motion records in Europe and worldwide.

Instead of having two seismicity regions i.e. Mw<5.5 and M>5.5 is probably better to propose amplification factors for increasing ground motion intensity for example PGA steps of 0.1g as in NEHERP

 Instead of anchoring the design response spectra to PGA (T=0sec) should be better to anchor to two spectral parameters Ss at 0.1-0.2sec and S1 at 1.0sec

Validation of the present amplification factors in EC8

&

New site-soil classification scheme, amplification factors and design response spectra

keeping the present seismicity categorization

Data selection

- Validation of the present EC8 elastic response spectra:
 - SHARE database (www.share-eu.org)
 - soil/site documentation: V_{s,30} and EC8 soil class
 - only records with $M_s \ge 4$ and $T_{usable} \ge 2.5$ sec were used
 - compilation of three subsets with different PGA levels
 - DS1: all PGA values
 - DS2: PGA ≥20 cm/s²
 - DS3: PGA ≥150 cm/s²

- SHARE database (Giardini et al., 2013, www.share-eu.org)
- > Soil/site documentation: $V_{s,30}$ and EC8 soil class
- > Only records with M_s≥4 and T_{usable}≥2.5 sec were used → DS1 dataset with 7161
 3-component accelerograms
- > DS1: all PGA values (N=7161)
- ▷ DS2: PGA ≥20 cm/s² (N=3500)
- ▷ DS3: PGA ≥150 cm/s² (N=559)

Soil class	DS1		DS	52	DS3		
SUII CIASS	Type 2	Type 1	Type 2	Type 1	Type 2	Type 1	
А	402	264	105	125	9	23	
В	1508	1896	419	1151	38	214	
С	1133	1775	353	1261	44	219	
D	10	4	3	1	-	-	
E	73	96	33	49	5	7	
Total	3126	4035	913	2587	96	463	
	7161		35	00	559		

Data selection

 Proposal of a new soil-site classification scheme, amplification factors and design spectra:

- SHARE-AUTH database (Pitilakis et al., 2013)
- 3,666 records from 536 stations from Greece, Italy, Turkey, Japan and USA with a well-documented soil profile up to the 'seismic' bedrock (V_s>800m/s)
- For all sites: H_{bedrock}, V_{s,average}, V_{s,30}, T₀
- Dataset DS4: $M_s \ge 4, T_{usable} \ge 2.5$ sec and PGA ≥ 20 cm/s²

Data selection

Dataset	Database of origin	Number of records	M _s range	PGA range (cm/s ²⁾
DS1	SHARE	7,161	4–7.9	≤1,400
DS2	SHARE	3,500	4–7.9	20 <pga≤1,400< td=""></pga≤1,400<>
DS3	SHARE	559	4–7.9	$150 < PGA \le 1,400$
DS4	SHARE-AUTH	715	4–7.5	20 <pga≤1,302< td=""></pga≤1,302<>

DS1 dataset

Validation of EC8 normalized spectra

- DS1 and DS2 for Type 2 (M_s≤5.5) and Type 1 (M_s>5.5) spectra
- > DS3 only for Type 1 spectra
- Calculation of geometric mean (GM) of the response spectra for the two orthogonal horizontal components of each record
- Normalization to GM PGA
- Grouping of records based on soil class and spectrum type (1 or 2)
- Calculation of median, 16th and 84th percentiles (average ± 1 standard deviation) and comparison

Validation of EC8 normalized spectra

Soil Class A

- EC8 spectra match the empirical data to a satisfactory extent (between median and 84th pctl)
- EC8 spectra become more conservative for datasets with higher mean PGA values

SDGEE

Pitilakis et al. (2012)

Validation of EC8 normalized spectra TYPE1

Soil Classes B-C

Good agreement between EC8 and empirical data

Wide range of normalized values, which becomes more constrained for datasets with higher mean PGA values

SDGEE

Validation of EC8 normalized spectra

Soil Classes D-E

- Soil class D: the ordinates of EC8 spectra do not provide a satisfactory fit to the median empirical spectra.
- Soil class E: EC8 spectra are conservative for periods greater than 0.3s. Potential need to increase the plateau.

SDGEE

Pitilakis et al. (2012)

Improved Soil Amplification Factors for EC8 soil classification

Pitilakis et al. (2012) GMPE selection and weights from Delavaud et al. (2012)

Improved Soil Factors for EC8 soil classification

Approach 1 (Choi & Stewart, 2005)

Research Unit of Soil Dynamics and Geotechnical Earthquake Engineering

Improved Soil Factors for EC8 soil classification

Type 2 (M _s ≤5.5)											
Soil Class	SHARE-DS1			SHARE-DS2			SHARE-DS3			EC8	Proposed
	Ap.1	Ap.2	W.A.	Ap.1	Ap.2	W.A.	Ap.1	Ap.2	W.A.		
В	0.90	1.55	1.23	1.51	1.37	1.44	-	-	-	1.35	1.40
С	1.93	2.54	2.23	2.19	2.12	2.16	-	-	-	1.50	2.10
D	3.36	3.07	3.22	2.92	2.00	2.46	-	-	-	1.80	1.80 ª
E	0.98	1.79	1.39	1.30	1.96	1.63	-	-	-	1.60	1.60 ^a

Type 1 (M _s >5.5)											
Soil Class	SHARE-DS1			SHARE-DS2			SHARE-DS3			EC8	Proposed
	Ap.1	Ap.2	W.A.	Ap.1	Ap.2	W.A.	Ap.1	Ap.2	W.A.		
В	1.47	1.34	1.41	1.53	1.08	1.31	1.49	0.94	1.22	1.20	1.30
С	2.09	2.24	2.16	2.06	1.46	1.76	1.82	1.15	1.48	1.15	1.70
D	1.74	1.42	1.58	1.56	0.92	1.24	-	-		1.35	1.35 ^a
E	0.91	1.07	0.99	0.97	0.83	0.90	0.93	0.78	0.85	1.40	1.40 ª

(a) site specific ground response analysis required

Pitilakis et al. (2012)

- Soil classes initially proposed based on theoretical 1D numerical analyses of representative models of realistic soil conditions (Pitilakis et al., 2004, 2006)
- Further developed based exclusively on experimental data from the SHARE AUTH database (Pitilakis et al., 2013)

> Main parameters:

- Fundamental period of soil deposit T₀
- \succ Average shear wave velocity of the entire soil deposit V_{s.av}
- Thickness of soil deposit H to the "seismic" bedrock
- N-SPT, PI, S_u
- More detailed geotechnical soil description and categorization

		Description	Τ ₀	Remarks
	Α	Rock formations		V _s ≥ 1500 m/s
A	A2	Slightly weathered / segmented rock formations (thickness of weathered layer <5.0m)	≤ 0.2s	Surface weathered layer: $V_{s,av} \ge 200 \text{ m/s}$ Rock Formations: $V_s \ge 800 \text{ m/s}$
		Geologic formations resembling rock formations in their mechanical properties and their composition (e.g. conglomerates)		V _s ≥ 800 m/s
		Highly weathered rock formations whose weathered layer has a considerable thickness (> 5.0m - 30.0m)		Weathered layer, V _{s,av} ≥ 300 m/s
E	31	Soft rock formations of great thickness or formations which resemble these in their mechanical properties (e.g. stiff marls)	≤ 0.5s	Vs: 400-800 m/s N-SPT > 50 Su> 200 KPa
		Soil formations of very dense sand – sand gravel and/or very stiff/ to hard clay, of homogenous nature and small thickness (up to 30.0m)		V _{s,av} : 400-800 m/s N-SPT > 50 Su > 200 KPa
E	32 F	Soil formations of very dense sand – sand gravel and/or very stiff/ to hard clay, of homogenous nature and medium thickness (30.0 - 60.0m), whose mechanical properties increase with depth	≤ 0.8s	V _{s,av} : 400-800 m/s N-SPT > 50 Su > 200 KPa

		Description	Τ ₀	Remarks
C	21	Soil formations of dense to very dense sand – sand gravel and/or stiff to very stiff clay, of great thickness (> 60.0m), whose mechanical properties and strength are constant and/or increase with depth	≤ 1.5s	V _{s,av} : 400-800 m/s N -SPT> 50 Su > 200 KPa
0	22	Soil formations of medium dense sand – sand gravel and/or medium stiffness clay (PI > 15, fines percentage > 30%) of medium thickness (20.0 – 60.0m)	≤ 1.5s	V _{s,av} : 200-450 m/s N -SPT> 20 Su > 70 KPa
0	23	Category C2 soil formations of great thickness (>60.0 m), homogenous or stratified that are not interrupted by any other soil formation with a thickness of more than 5.0m and of lower strength and Vs velocity	≤ 1.8s	V _{s,av} :200-450 m/s N-SPT > 20 Su > 70 Kpa

	Description	Τ ₀	Remarks
D1	Recent soil deposits of substantial thickness (up to 60m), with the prevailing formations being soft clays of high plasticity index (PI>40), high water content and low values of strength parameters	≤ 2.0s	V _{s,av} ≤ 300 m/s N-SPT < 25 Su < 70KPa
D2	Recent soil deposits of substantial thickness (up to 60m), with prevailing fairly loose sandy to sandy-silty formations with a substantial fines percentage (not to be considered susceptible to liquefaction)	≤ 2.0s	V _{s,av} ≤ 300 m/s N-SPT < 25
D3	Soil formations of great overall thickness (> 60.0m), interrupted by layers of category D1 or D2 soils of a small thickness (5 – 15m), up to the depth of ~40m, within soils (sandy and/or clayey, category C) of evidently greater strength, with Vs≥ 300 m/sec		V _{s,av} : 150-600 m/s

	Description	T ₀	Remarks
E	Surface soil formations of small thickness (5 - 20m), small strength and stiffness, likely to be classified as category C and D according to its geotechnical properties, which overlie category A formations (Vs ≥ 800 m/sec)	≤ 0.7s	Surface soil layers, V _{s,av} ≤ 400 m/s
x	Loose fine sandy-silty soils beneath the water table, sus special study proves no such danger, or if the soil's mech Soils near obvious tectonic faults Steep slopes covered with loose lateral deposits Loose granular or soft silty-clayey soils, provided they h terms of dynamic compaction or loss of strength. Recent loose landfills Soils with a very high percentage in organic material Soils requiring site-specific evaluations	ceptible to nanical pro ave been p	liquefaction (unless a perties are improved) proven to be hazardous in

Methods to estimate T₀

 Geotechnical and geophysical data (boreholes, lab tests, SPT, CPT, Cross-hole, Down-hole tests, SASW, Array measurements of mictrotremors etc)

 $T_0 = 4H/Vs$

- Geophysical-seismic methods
 - Ambient noise measurements
 - SSR : Two stations, one on the nearby reference outcrop
 - HVSR (Nakamura method) : Single station method

Normalized spectra

- SHARE-AUTH database
- 2 spectrum Types (same as EC8)
 - Type 1: Ms > 5.5
 - ➤ Type 2: Ms ≤ 5.5
- Same equation forms as in EC8 but with varying spectral amplification parameter β.
- For each soil class and spectrum type: median, 16th and 84th pctls
- Parameters T_B, T_C, T_D and β → fit to 84th pctl

Pitilakis et al. (2013)

New site – soil classification scheme and amplification factors

- Same logic tree approach as for EC8
- ▷ Dataset DS4 from SHARE-AUTH database : $M_s \ge 4$, $T_{usable} \ge 2.5$ sec and PGA ≥ 20 cm/s²

Soil Class	Type 2 (M _s ≤5.5)					Type 1 (M _s >5.5)				
	Ap. 1	Ap. 2	Weighted Average	Proposed	EC8	Ap. 1	Ap. 2	Weighted Average	Proposed	EC8
B1	1.28	0.99	1.13	1.20	1.35	1.03	1.03	1.03	1.10	1.20
B2	1.89	1.17	1.53	1.50	(B)	1.36	1.28	1.32	1.30	(B)
C1	2.02	1.46	1.74	1.80		2.19	1.27	1.73	1.70	
C2	2.08	1.39	1.74	1.70	1.50 (C)	1.35	1.15	1.25	1.30	1.15 (C)
C3	2.59	1.61	2.10	2.10		1.57	1.07	1.32	1.30	
D	2.19	2.26	2.23	2.00 ^a	1.80	2.03	1.79	1.91	1.80 ^a	1.35
E	1.54	1.30	1.42	1.60 ^a	1.60	1.10	0.94	1.02	1.40 ^a	1.40

^a Site specific ground response analysis required

Pitilakis et al. (2013)

Elastic acceleration response spectra (5%)

Pitilakis et al. (2013)

Period – dependent amplification factors TYPE1

EC8

Improved EC8

New site classification, amplification factors and design response spectra Considering Two anchoring spectral parameters Ss and S1 & Scalar increase of seismic intensity

SHARE-AUTH database

• 3,666 records from 536 stations from Greece, Italy, Turkey, Japan and USA with a well-documented soil profile up to the seismic bedrock (Vs>800m/s)

Pitilakis et al. (2013)

$T_0(sec)-H(m)$

Site categorization

The main parameters

- The **fundamental period** of soil deposit, **T**₀
- The average shear wave velocity of the entire soil deposit to the "seismic bedrock", V_{s,av} or the average shear wave velocity of the upper 30m of the soil profile, V_{s,30}
- The **thickness of the soil deposit** (i.e. depth to the "seismic" bedrock Vs>800m/s), **H**

together with appropriate descriptive parameters of the geotechnical conditions namely

- the dominant soil profile description and average values of standard penetration test blow count N_{SPT}
- plasticity index PI
- undrained shear strength S_u over depth H

Parameters derived from other field tests like the cone penetration test or pressumeter may be also used. In case of absence of direct measurement of these parameters adequate correlations may be used.

SDGEE

Site categorization

The fundamental period of soil deposit, T_0 , and the average shear wave velocity of the entire soil deposit, $V_{s,av}$, are defined by the following expressions:

$$T_0 = {}^{4H} / _{V_{s,av}}$$

$$V_{s,av} = \frac{H}{\sum_{i=1,N_b}^{h_i}/V_i}$$

where h_i and V_i denote respectively the thickness and shear-wave velocity of the i -th layer, in a total of N_b layers from the surface to the "seismic" bedrock

The value of the average shear wave velocity of the upper 30m of the soil profile, $V_{s,30}$, is defined by the following equation:

$$V_{s,30} = \frac{30}{\sum_{i=1,N}^{h_i} / V_i}$$

where N is the number of layers existing in the top 30m
Site categorization

To obtain T_0 and $V_{s,av}$ or $V_{s,30}$ from equations invasive (in-hole measurements) or non-invasive (e.g. surface-waves analysis) techniques at small strains should be preferred.

H may be available from geological, geophysical or geotechnical information.

The sites are classified into six basic categories (A, B, C, D, E and X) with subclasses for site class B and C

Site specific ground response studies should be carried out in the following cases:

 For site conditions matching site class X for the definition of the seismic action and sites susceptible to soil liquefaction and soil failure under the seismic action
 For buildings of importance class III and IV in soft soil sites (Vs,30 <200m/s) generally classified in site classes D or E

- When site conditions cannot be clearly associated to standard site categories

-Rock formations -Slightly weathered / segmented rock formations (thickness of weathered layer Bock like formations: V		Description	Τ _ο	Remarks
A $(\text{thickness of weathered layer} < 5.0 \text{m})$ -Geologic formations resembling rock formations in their mechanical properties and their composition (e.g. conglomerates) $\leq 0.2 \text{s}$ $\leq 0.2 \text{s}$ $\leq 0.2 \text{s}$ Surface weathered layer (if any with H<5m): $V_{s,av} \geq 300 \text{ m/s}$	Α	-Rock formations -Slightly weathered / segmented rock formations (thickness of weathered layer <5.0m) -Geologic formations resembling rock formations in their mechanical properties and their composition (e.g. conglomerates)	≤ 0.2s	Hard rock $Vs_{,av} > 1500 \text{ m/s}$ Rock like formations: $V_{s,av}$ or $V_{s30} \ge 800 \text{ m/s}$ Surface weathered layer (if any with H<5m): $V_{s,av} \ge 300 \text{ m/s}$

	Description	Τ _ο	Remarks	
	-Soft rock formations -Formations which resemble to soft rock in their mechanical properties (e.g. stiff marls) -Very dense sand-gravels -Hard and very stiff clays H<30m	0.1-0.3s ≤ 0.3s	V _{s,av} : 350-600 m/s V _{s,30} : 400-760m/s N-SPT > 50 S _u > 150 KPa	B1
B	-Soil formations of very dense sand – sand gravel and/or very stiff/ to hard clay, of homogenous nature, whose mechanical properties increase with depth 30m<h<60m< b=""></h<60m<>	0.3-0.6s ≤ 0.6s	V _{s,av} : 400-550 m/s V _{s,30} : 350-500m/s N-SPT > 50 S _u > 150 KPa	B2

	Description	Τ _ο	Remarks	
C1	Soil formations of dense sand – sand gravel and/or stiff clay, of great thickness (> 60.0m), whose mechanical properties and strength are constant and/or increase with depth H>60m	0.6-1.0s ≤ 1.0s	V _{s,av} : 400-600 m/s V _{s30} :350-450 m/s N -SPT> 50 S _u > 150 KPa	C1
C2	Soil formations of medium dense sand – sand gravel and/or medium stiffness clay (PI > 15, fines percentage > 30%) 20m <h< 60m<="" b=""></h<>	0.3-0.7s ≤ 0.8s	V _{s,av} : 250-450 m/s V _{s30} :250-400 m/s N -SPT> 20 150KPa> S _u > 70 Kpa	C2
С3	Like C2 but with great thickness H>60m	0.7-1.4s ≤ 1.4s	V _{s,av} : 300-500 m/s V _{s30} :200-350 m/s N -SPT> 20 150KPa > S _u > 70 Kpa	C3

		Description	Τ _ο	Remarks
	-Recent soil deposits of substantial thickness (up to 60m or more), with the prevailing formations being soft clays or/ and clays with a thickness h>3.0m, of high plasticity index (PI>20), high water content (W>40%) and low values of strength parameters (Su<25KPa)	≤ 1.4s		
	D	 Recent soil deposits of substantial thickness (up to 60m), with prevailing loose sandy to sandy-silty formations with a substantial fines percentage (not to be considered susceptible to liquefaction) 	≤ 1.4s	V _{s,av} : 200-400 m/s V _{s30} :150-300 m/s N-SPT < 20 S _u < 70KPa
		 Soil formations of great overall thickness 60.0m), interrupted by layers of soft soils of a small thickness (5 – 15m), up to the depth of ~40m, within soils (sandy and/or clayey, category C) of evidently greater strength, with V_{s,av}≥ 300 m/sec 	1.4-3.0s ≤ 3.0s	

	Description	Τ ₀	Remarks		
E	Surface soil formations of small thickness (5 - 20m), small strength and stiffness, likely to be classified as category C and D according to its geotechnical properties, which overlie category A formations (V _{s,av} ≥800 m/sec)	0.1-0.5s ≤ 0.5s	V _{s,av} : 160- 300 m/s		
x	Loose fine sandy-silty soils beneath the water table, susceptible to liquefaction (unless a special study proves no such danger, or if the soil's mechanical properties are improved) Soils near obvious tectonic faults Steep slopes covered with loose lateral deposits Loose granular or sot silty-clayey soils, provided they have been proven to be hazardous in terms of dynamic compaction or loss of strength. Recent loose landfills Soils with a very high percentage in organic material Special soils requiring site-specific evaluations				

Seismic action

Territories shall be mapped depending on the local seismic hazard.

The seismic hazard is described in terms of two parameters, namely:

- S_{s,ref}, the reference maximum spectral acceleration, corresponding to the constant acceleration branch of the horizontal 5% damped elastic response spectrum
- S_{1,ref}, the reference spectral acceleration at the vibration period T = 1 s of the horizontal 5% damped elastic response spectrum

 $S_{s,ref}$ and $S_{1,ref}$ are given for the reference return period for example 475y or 10% probability of exceedence in 50 years

Horizontal elastic response spectrum

For the **horizontal components of the seismic action**, the elastic response spectrum $S_e(T)$ is defined by the following expressions:

$$0 \le T \le T_A : S_e(T) = \frac{S_S}{F_0}$$

$$T_A \le T \le T_B : S_e(T) = \frac{S_S}{T_B - T_A} \left[\eta \cdot (T - T_A) + \frac{T_B - T}{F_0} \right]$$

$$T_B \le T \le T_C : S_e(T) = \eta \cdot S_S$$

$$T_C \le T \le T_D : S_e(T) = \eta \cdot \left[\frac{S_1 \cdot T_1}{T} \right]$$

$$T \ge T_D : S_e(T) = \eta \cdot T_D \left[\frac{S_1 \cdot T_1}{T^2} \right]$$

where

T $S_{\rm s}$

 T_1

- $S_{e}(T)$ is the elastic response spectrum;
 - is the vibration period of a linear single-degree-of-freedom system;
 - is the maximum response spectral acceleration (5% damping) corresponding to the constant acceleration range of the elastic response spectrum;
- S_1 is the 5% damping response spectral acceleration at the vibration period $T_1 = 1$ s;
 - $T_1 = 1$ s;
- T_A is the short-period cut-off associated to the peak ground acceleration;
- F_0 is the ratio of S_s with respect to the peak ground acceleration;

$$T_{\rm C} = \left[\frac{S_1 \cdot T_1}{S_S}\right]$$
 is the upper corner period of the constant spectral acceleration range;

- $T_{\rm B} = \left[\frac{T_C}{\kappa}\right]$ is the lower corner period of the constant spectral acceleration range, with 0.05 s $\leq T_{\rm B} \leq 0.1$ s, whatever value of $T_{\rm G}$
- κ is the ratio of T_C and T_B ;
- T_D is the corner period at the beginning of the constant displacement response range of the spectrum;
- η is the damping correction factor, with a reference value of $\eta = 1$ for 5% viscous damping

Horizontal elastic response spectrum

Recommended values for seismic hazard parameters defining the elastic response spectrum

T _A (s)	к (*)	F ₀ (**)	T _D (s)		
0,03	5.0	2.5	$\begin{array}{ll} 2 & \text{if } S_{1RP} \leq 0,1g \\ 1+10 \cdot S_{1RP} & \text{if } S_{1RP} > 0,1g \end{array}$		

 F_0 may take higher values e.g. 2.75 for site categories E in particular of low seismicity regions.

The spectral accelerations S_s and S_1 are defined as follows:

 $S_{s} = F_{T} \times F_{B} \times F_{s} \times S_{sRP}$ $S_{1} = F_{T} \times F_{B} \times F_{1} \times S_{1RP}$

where

- F_s is the short period site amplification factor
- F_1 is the intermediate period (T1 = 1 s) site amplification factor
- F_{T} is the topography amplification factor
 - is the basin (or valley) period dependent amplification factor

The site amplification factors Fs and F1 are soil and intensity dependent

DGFF

F_B

Horizontal elastic response spectrum

Period independent topography and period dependent basin amplification factors, FT and FB respectively should be applied (with values to be defined).

The value of the damping correction factor η should be determined by the expression:

$$\eta = 10 / (5 + \xi) \ge 0.55$$

where η is the viscous damping ratio of the structure, expressed as a percentage. For η values larger than 28% this formula should be replaced by:

$$\eta = \frac{1}{0.85 + 3\xi - 2.8\xi \exp[-3T / (T_c \xi)]}$$

Elastic displacement response spectrum

The elastic displacement response spectrum, SDe(T) is given by the following expressions:

$$\begin{aligned} \mathsf{T} &\leq \mathsf{T}_{\mathsf{E}} : \ \mathsf{S}_{\mathsf{De}}(\mathsf{T}) = \mathsf{S}_{\mathsf{e}}(\mathsf{T}) \bigg[\frac{\mathsf{T}}{2\mathsf{n}} \bigg]^2 \\ \mathsf{T}_{\mathsf{E}} &\leq \mathsf{T} \leq \mathsf{T}_{\mathsf{F}} : \ \mathsf{S}_{\mathsf{De}}(\mathsf{T}) = \mathsf{S}_{\mathsf{e}}(\mathsf{T}_{\mathsf{D}}) \bigg[1 + \bigg(\frac{\mathsf{F}_{\mathsf{L}}}{\mathsf{F}_{\mathsf{1}}} - 1 \bigg) + \frac{\mathsf{T} - \mathsf{T}_{\mathsf{E}}}{\mathsf{T}_{\mathsf{F}} - \mathsf{T}_{\mathsf{E}}} \bigg] \\ \mathsf{T} &\geq \mathsf{T}_{\mathsf{F}} : \mathsf{S}_{\mathsf{De}}(\mathsf{T}) = \mathsf{S}_{\mathsf{e}}(\mathsf{T}_{\mathsf{D}}) \cdot \frac{\mathsf{F}_{\mathsf{L}}}{\mathsf{F}_{\mathsf{1}}} \end{aligned}$$

 $S_e(T)$ is the elastic response spectrum

 $T_E = \max[T_D, 6 \text{ s}], T_F = 10 \text{ s};$

 F_L is the long period site amplification factor given as a function of F_1 (in parenthesis the site class):

 $F_L = F_1(A), F_L = 0.9 \cdot F_1(B1, B2 \text{ and } C1), F_L = 0.75 \times F_1(C2 \text{ or } C3), F_L = 0.6 \times F_1(D \text{ or } E)$

Soil amplification factors

• The soil factors proposed by Pitilakis et al. (2013) were properly adjusted to include the nonlinear term developed by Seyhan and Stewart (2014) and adopted in the Boore et al. (2014) GMPE:

$$F_{S,B} = \ln(F_{lin}) + \ln(F_{nl})$$

$$\ln(F_{nl}) = f_1 + f_2 \ln\left(\frac{PGA_r + f_3}{f_3}\right)$$

$$f_2 = f_4 \left[\exp\left\{f_5\left(\min(V_{S30}, 760) - 360\right)\right\} - \exp\left\{f_5\left(760 - 360\right)\right\}\right]$$

 $f_1=0, f_3=0.1, f_4, f_5=$ period-dependent constant values

- Site amplification factors F_s and F_1 are proposed for the different site classes and for distinct values of S_{sRP} at rock site conditions representing very low-low, medium and high seismicity (S_{sRP} =PGA_r•F₀).
- Nonlinear terms are estimated for increasing S_{sRP} values using the properly estimated GMPE coefficients for short (F_s) and intermediate period (T=1s) (F_1)

New Soil factors

Fs Factors

Site class	S _{sRP} maximu	m response sp	ectral acceleration	ectral acceleration at short period on site class A in g ^a			
	<i>S_{sRP}</i> <0.25 (^c)	<i>S_{sRP}</i> =0.25	<i>S_{sRP}</i> =0.5	<i>S_{sRP}</i> =0.75	<i>S_{sRP}</i> =1.0	<i>S_{sRP}</i> ≥1.25	
A	1.00	1.00	1.00	1.00	1.00	1.00	
B1	1.30	1.30	1.20	1.20	1.20	1.20	
B2	1.40	1.30	1.30	1.20	1.10	1.10	
C1	1.70	1.60	1.40	1.30	1.30	1.20	
C2	1.60	1.50	1.30	1.20	1.10	1.00	
C3	1.80	1.60	1.40	1.20	1.10	1.00	
D ^b	2.20	1.90	1.60	1.40	1.20	1.00	
Ep	1.70	1.60	1.60	1.50	1.50	1.50	
Xp	-	-	-	-	-	-	

^a Use straight line interpolation for intermediate values of S_{sRP} .

^b Site-specific geotechnical investigation and dynamic site response analyses shall be performed under conditions defined in this document

^c Dynamic soil response practically in the elastic range

New Soil factors

F₁ **Factors**

Sito class	S _{sRP} maximu	m response sp	ectral acceleration at short period on site class A in g ^a			
Sile class	S _{sRP} <0.25 ^(c)	<i>S_{sRP}</i> =0.25	<i>S_{sRP}</i> =0.5	<i>S_{sRP}</i> =0.75	<i>S_{sRP}</i> =1.0	<i>S_{sRP}</i> ≥1.25
A	1.00	1.00	1.00	1.00	1.00	1.00
B1	1.40	1.40	1.40	1.40	1.30	1.30
B2	1.60	1.50	1.50	1.50	1.40	1.30
C1	1.70	1.60	1.50	1.50	1.40	1.30
C2	2.10	2.00	1.90	1.80	1.80	1.70
C3	3.20	3.00	2.70	2.50	2.40	2.30
D ^b	4.10	3.80	3.30	3.00	2.80	2.70
Ep	1.30	1.30	1.20	1.20	1.20	1.20
Xp	-	_	-	-	-	-

^a Use straight line interpolation for intermediate values of S_{sRP} .

^b Site-specific geotechnical investigation and dynamic site response analyses shall be performed under conditions defined in this document

^c Dynamic soil response practically in the elastic range

Elastic response spectra

Elastic response spectra

Normalised elastic response spectra

Normalised elastic response spectra

Advantages of the proposed site conditions and seismic actions compared to the proposal of PT1

New site/soil classification

- **Easily understandable and applied** by the engineering community compared to the rather complicated scheme and procedure proposed in PT1 draft
- Fulfills all basic requirements of the ongoing revision of EC8 Part1 and is compatible in its conceptual axis with the most advanced and modern international seismic codes.

Summary

 New soil classification scheme with period and intensity depended amplification factors, using exclusively worldwide records and stations of well known soil conditions (500 stations and 3.500 records)

- Reference Ground Motion: Vs,rock > 800m/s (SHARE-SERA)
- Introduction of 2 intensity measures instead of only one (PGAr)
 i.e. spectral values Ss (at 0.1-0.2s) and S1 (at 1.0s)
- Amplification factors (F_s and F₁) of S_s and S₁ for increasing PGA_r values (0.1g->0.5g)
- Soil classes: A, B, C, D, E and X with sub-classes for soil class B and C
- Soil classification according to: geotechnical description (SPT, PI, Su etc), thickness (H), V_{s,30} or/and V_{s,average} and T_o.

Further validation, sensibility analysis and cross-check with available experimental data and records is deemed necessary.

Further needs

- Spectral values at very long periods (T>4sec up to 15sec)
- Velocity spectra (in particular for long periods)
- Displacement spectra (in particular for long periods)
- Valley, basin and topographic effects
- Slope and topographic effects
- Decisions (and conditions) regarding the possibility of a EU States to adopt a zoning approach and national based soil classification schemes and amplification factors
- Describe conditions and criteria for the cases where special studies should be needed and recommended for example for soil type D (and E) eventually in relation also to the typology and importance of the structure (not mandatory)
- Take care of "special cases" for example very deep basins

Aggravation factors to account for basin and valley effects

Numerical analyses

- Numerical parametric analyses of the 2D seismic response of sediment-filled basins for vertically incident plane waves with SV polarization.
- Numerical codes:
 - 2DFD_DVS finite difference code (Moczo et al., 2007; Moczo et al., 2004; Kristek and Moczo, 2003; Kristek et al., 2002) for viscoelastic analyses of homogeneous basins (96 models x 9 input motions)
 - ABAQUS finite element code (ABAQUS, 2010) for nonlinear analyses of inhomogeneous basins (6 models x 6 input motions x 3 levels of shaking)
- Verification of the efficiency of the two codes in reproducing complex 2D as well as 1D site response before proceeding with the analyses.

Parametric analyses

> 96 trapezoidal basin models:

32 geometrical configurations, described by their width, w, depth, h and sloping edge angles, a1-a2

Elastic bedrock

3 materials for sediments:

	Material property	Material 1	Material 2	Material 3
	S-wave velocity (V _s in m/s)	250	350	500
Sediments	Quality factor of S-waves (Q _s)	25	35	50
	P-wave velocity (V _s in m/s)	1600	1750	2000
	Quality factor of P-waves (Q_p)	50	70	100
	Density (ρ in kg/m³)		2000	

SDGEE

Parametric analyses

2D analysis

1D analysis

Aggravation factors

The additional effect of the 2D response at different locations at the surface of the basin with respect to the corresponding 1D response of the isolated soil columns in each location is quantified through a period-dependent seismic aggravation factors (AGF):

 $AGF(T) = \frac{Spectral acceleration from 2D analysis}{Spectral acceleration from 1D analysis}$

Chávez-García and Faccioli (2004)

- A period-dependent aggravation factor is computed at each receiver for each model and each input.
- For each model, the average period-dependent aggravation factor is calculated from the 9 accelerograms at each receiver.
- The maximum value of the average period-dependent aggravation factor at each receiver is identified.

Maximum AGF

- > A period-dependent AGF was computed at each receiver for each input.
- An average period-dependent AGF was calculated at each receiver over the nine input motions.
- The maximum value of the average period-dependent AGF at each receiver was identified.
- Maximum AGF for all receivers were plotted along the basin width.

Maximum aggravation factors

Maximum aggravation factors

Influence of basin thickness (h)

> Increase of thickness \rightarrow higher AGF, especially for sediments with low Vs

Maximum aggravation factors

Influence of basin width (w)

 \succ Increase of width \rightarrow smaller AGF at the center of the basin

Maximum aggravation factors Effect of soil nonlinearity

Consideration of soil nonlinearity for the sediments material does not affect the estimated aggravation factor significantly (small decrease of AGF far from the basin edge and minor increase close to the basin edge)

Towards practical recommendations: Spatial distribution of AGF

Symmetrical models:

Region d1 of model w1h3a1Vs1 w=2500m h=250m, a1=a2=20° Vs=250m/s

T_{0,c}=4h/Vs (1D fundamental period at the flat part of the basin)

Mean aggravation factors for specific regions

- Shallow and medium-thickness basins (thickness of 60m or 120m):
 - Symmetrical models: regions c1 and d1 are the most affected
 - Non-symmetrical models: region c1 is the most affected
 - Maximum AGF ~1.1-1.5
- Deep basins (thickness of 250m or 500m):
 - Symmetrical models: regions a1 and e1 are the most affected
 - Non-symmetrical models: regions e2 and c2 are the most affected
 - Maximum AGF ~1.4-2.4

Period-dependency of AGF

- > So far, maximum aggravation factors have been mainly presented
- However, there is a strong period-dependency of AGF

Towards practical recommendations for EC8

Region d1 of model w1h3a1Vs1 (w=2500m, h=250m, a1=a2=20°, Vs=250m/s)

 Short-period average for periods less than 0.75T_{0,c}:

AGF_s=1.2

Long-period average for periods
 between 0.75T_{0,c}-1.50T_{0,c}:

 $AGF_{L}=1.6$

Research Unit of Soil Dynamics and Geotechnical Earthquake Engineering

123

Research Unit of Soil Dynamics and Geotechnical Earthquake Engineering

124

Short-period average AGF_S

2.4 -2.4 region c1 short region c1 long median median 2.2 -2.2 16th-84th percentile 16th-84th percentile 2 2 1.8 -1.8 1.6 1.6 AGF о^о 1.4 1.4 1.2 1.2 1 1 0.8 0.8 0.6 0.6 0.4 0.4 2 2 0 6 4 6 4 8 0 ^T. **a**₁ **b**₁ $\mathsf{T}_{0,\mathsf{c}}$ C₁ d, **e**₁ **SDGEE**

Research Unit of Soil Dynamics and Geotechnical Earthquake Engineering

8

Long-period average AGF_L

Short-period average AGF_S

Long-period average AGF_L

Short-period average AGF_S

2.4 -2.4 region e1 short region e1 long median median 2.2 -2.2 16th-84th percentile 16th-84th percentile 2 2 1.8 -1.8 1.6 1.6 о^о 1.4 – ЧОК AGF 1.4 1.2 1.2 1 1 0.8 0.8 0.6 0.6 0.4 0.4 2 2 0 6 4 6 8 4 8 0 ^T. **a**₁ **b**₁ $\mathsf{T}_{0,\mathsf{c}}$ \mathbf{C}_1 **d**₁ e₁ **SDGEE**

Research Unit of Soil Dynamics and Geotechnical Earthquake Engineering

127

Long-period average AGF_L

Recommendations for EC8

Short-period average AGF_S

T _{0,c}		Region a1	Region b1	Region c1	Region d1	Region e1
T _{0,c} <3.0s	median	0.81	0.62	1.08	1.03	1.02
	84 th	0.89	0.94	1.13	1.09	1.06
T _{0,c} ≥3.0s	median	0.74	0.65	1.11	1.10	1.12
	84 th	0.91	1.02	1.19	1.14	1.22

Long-period average AGF_L

T _{0,c}		Region a1	Region b1	Region c1	Region d1	Region e1
T _{0,c} <3.0s	median	0.94	0.68	1.01	1.04	1.03
	84 th	1.02	0.84	1.05	1.12	1.12
T _{0,c} ≥3.0s	median	0.91	0.85	1.08	1.29	1.46
	84 th	1.58	1.08	1.31	1.54	1.85

Example: Definition of input motion across a basin

Research Unit of Soil Dynamics and Geotechnical Earthquake Engineering

Conclusive remarks

- Proposals for improvement of EC8 design spectra:
 - ➤ Improved S factors for the current EC8 classification scheme → need for an increase in S factors at least for soil class C
 - New site soil classification scheme with corresponding period dependent elastic response spectra following the present EC8 seismicity classification in terms of PGArock
 - New alternative to PT1 draft soil-site classification and site amplification factors for gradually increased seismic intensity in terms of spectral values Ss and S1
- Proposal of extra aggravation factors (AGF) for complex subsurface geometry:
 - AGF are not uniform along the basin
 - AGF depend mainly on the dimensions of the basin (width, depth) and impedance shear wave velocity of the sediments (uniform and gradient)
 - > AGF are strongly site (along the basin) and period-dependent
 - Short-period aggravation and long-period aggravation factors to account for the complex basin effects.

Going Beyond Generic Site Factors

Seismic Code vs. Site-specific analysis

- Simplified procedure (Site factors Fa & Fv, Site classes)
 O Widely used but...
- Site-specific analysis is needed for
 - Hard Rock (different reference rock conditions, high frequency content)
 - Shallow reference Rock (<30m)
 - \circ Non-US site conditions
 - \circ Thick sections (> 30 m) of F, E, and E/D soils
 - Thick soil deposits (>>150m)
 - \circ Thin sections (5-15m) of soil over hard rock
 - Special and critical structures

Need for Site-specific study

- Site Classification: If the subsurface conditions classify a site as Site Class F, the codes require a site-specific study.
- Cost Optimization: If the owner wants to reduce construction costs, a site-specific study can performed to reduce dynamic loads and the Seismic Design Category (SDC).
- Analysis Method: If the importance of a structure or the variability of subsurface conditions require parameters that are not readily available in codes, such as soil structure interaction parameters or time histories of acceleration

(Nikolaou 2008)

November 10th, 1940, Mw = 7.7,h~150 km

Collapse of the Carlton building-the tallest RC building in Bucharest: 11 storey, h = 47 m, Death of 130 people

> The 1940 Vrancea Earthquake. Issues, Insights and Lessons Learnt Radu Vacareanu • Constantin Ionescu

Des équipes de soldats roumains et allemands fouillent méthodiquement les décombres du Carlton à Bacarest. TREMBLEMENT DE TERRE EN ROUMANIE

SDGEE

March 4, 1977, Mw=7.5, h=109 km

Killed 1,578 people (1424 in Bucharest) Injured 11,221 people (7598 in Bucharest)

- Destroyed or seriously damaged 33,000 housing units
- Lesser damage to 182,000
- Destroyed 11 hospitals and damaged 448 others hospitals
- 32 tall buildings completely collapsed
- The World Bank estimation of losses (Report 16.P-2240-RO, 1978):
- Total losses in Romania : 2.05 billion USD (100%)
- Construction losses : 1.42 (70%)
- Building and housing losses : 1.02 (50%)

Ground motion distribution across Bucharest

Mw = 7.8 & h = 145 km Mw = 7.0 & h = 115 km Mw = 7.5 & h = 135 km Mw = 6.5 & h = 75 km PGA : (0.06-0.6 g)

F.Pavel, I. Calotescu, R.Vacareanu, A-M. Sandulescu, 2017

SDGEE

Assessment of seismic risk scenarios for Bucharest

Economic losses

Sconario	_	Economi	ic losses	Economic losses in bill.		
Scenario	<i>M</i> _w , <i>h</i> , <i>d</i>	Mean (bill.	COV	Euro from Pavel and		
no.		Euro)	COV	Vacareanu (2016)		
1	<i>M</i> _W = 7.0, <i>h</i> = 90 km, <i>d</i> = 120 km	3.60	0.74	7.20		
2	<i>M</i> _W = 7.0, <i>h</i> = 150 km, <i>d</i> = 180 km	1.78	0.82	5.04		
3	<i>M</i> _w = 7.5 <i>, h</i> = 90 km <i>, d</i> = 120 km	7.34	0.54	10.31		
4	<i>M</i> _W = 7.5 <i>, h</i> = 150 km <i>, d</i> = 180 km	3.93	0.72	7.68		
5	<i>M</i> _W = 8.0, <i>h</i> = 90 km, <i>d</i> = 120 km	11.49	0.36	12.72		
6	<i>M</i> _W = 8.0, <i>h</i> = 150 km, <i>d</i> = 180 km	7.18	0.55	.10.09		

F.Pavel, I. Calotescu, R.Vacareanu, A-M. Sandulescu, 2017

Assessment of seismic risk scenarios for Bucharest

Sconario	_	Affecte	Affected people		
no.	<i>M</i> _{<i>w</i>} , <i>h</i> , <i>d</i>	Mean	COV	from Pavel and Vacareanu (2016)	
1	M_W = 7.0, h = 90 km, d = 120 km	9779	1.13	7086	
2	<i>M</i> _W = 7.0, <i>h</i> = 150 km, <i>d</i> = 180 km	1888	0.97	3398	
3	<i>M_W</i> = 7.5 <i>, h</i> = 90 km <i>, d</i> = 120 km	14148	1.29	17780	
4	<i>M</i> _W = 7.5 <i>, h</i> = 150 km <i>, d</i> = 180 km	11942	1.09	8074	
5	<i>M_W</i> = 8.0, <i>h</i> = 90 km, <i>d</i> = 120 km	46161	1.29	38282	
6	<i>M</i> _W = 8.0, <i>h</i> = 150 km, <i>d</i> = 180 km	13480	1.32	16822	

Number of affected people

F.Pavel, I. Calotescu, R.Vacareanu, A-M. Sandulescu, 2017

Downhole Arrays in Earthquake Engineering

Seismic downhole array provide a unique source of information On actual soil behavior over a wide range of loading conditions

- Treasure Island, California
- Lotung, Taiwan
- Hualien, Taiwan
- Wildlife Refuge, Imperial County, California
- Port Island, Japan
- KiK-net ~700 locations, Japan
- EuroSeisTest, Greece
- Shear wave characteristics (correlation & spectral analyses)
- Variation of V_s with depth
- Site resonant frequencies and modal configurations
- empirical Green's function technique for predicted large earthquake ground motion using small events;
- Validations of 1D numerical modelling
- Dynamic properties of soils over a wide strain loading conditions

Seismic networks in Bucharest (Lungu et al., 2003)

SDGEE

INC – Downhole Array

BUCHAREST CITY AREA

Lithological South-North cross-section

N. Mándrescu, C. Caprã

Fig. 1 – Lithological cross-section for Bucharest area (after Mandrescu et al., 2004). One can notice the dipping of the sediments towards north.

(Zaharia et al., 2006)

SINGLE-STATION AND ARRAY MICROTREMOR MEASUREMENTS after YAMANAKA et al., 2007

Research Unit of Soil Dynamics and Geotechnical Earthquake Engineering

Downhole arrays in Bucharest

Station	B2-Z	Vs,30 (m/s)	Vs,52 (m/s)	Fo_SSR (Hz)
INC	-153m	309	326	0.7
UTC1	-78m	293	309	1.2
SMU	-70m	288	318	1.3
PRC	-68m	284	310	1.2
UTC2	-66m	270	302	1.4
PRI	-52m	219	258	1.5

ALDEA et al.,2007

INC – Downhole Array, S-E of Bucharest Vs (m/s)

Aldea et al., 2006

Research Unit of Soil Dynamics and Geotechnical Earthquake Engineering

SDGEE

INC – Downhole Array

27.10.2004 Vrancea earthquake, Mw=6.0, R=160km, Depth=105km

INC – Downhole Array – Application of Cross Correlation

Validation of $V_{s,m}$ variation from actual records

Depth	EW				NS			
(m)	Incident		Reflected		Incident		Reflected	
	td(s)	Vs(m/s)	td(s)	Vs(m/s)	td(s)	Vs(m/s)	td(s)	Vs(m/s)
0.0-24.0	0.078	307	0.091	265	0.083	288	0.078	307
0.0-153.0	0.403	380	0.412	371	0.408	375	0.408	375
24.0-153.0	0.320	403	0.319	405	0.464	278	0.460	281

Research Unit of Soil Dynamics and Geotechnical Earthquake Engineering

INC – Downhole Array – Application of Cross Correlation $V_{s (m/s)}$

Research Unit of Soil Dynamics and Geotechnical Earthquake Engineering
Site Response Characteristics: Spectral Ratios

High Amplification at surficial layers

Site Response Characteristics: Spectral Ratios

SDGEE Research Unit of Soil Dynamics and Geotechnical Earthquake Engineering

Site Response Characteristics: Spectral Ratios

1D Equivalent Linear and Non-Linear Analysis – DeepSoil Modified by Matasovic, 1993 the Konder & Zelesko, 1963 - Pressure depended model

1D Wave Propagation – Time Domain Solution

Research Unit of Soil Dynamics and Geotechnical Earthquake Engineering

1D Equivalent Linear and Non-Linear Analysis – DeepSoil Modified by Matasovic, 1993 the Konder & Zelesko, 1963 - Pressure depended model

Non-Linear Analysis

INC – Downhole Array - 27/10/2004

BRI – 1977 Record, Ms=7.05, R=161km

Extremely Large Induced **Shear strains** At upper 24m

Development of Synthetic Time Histories

Research Unit of Soil Dynamics and Geotechnical Earthquake Engineering

Research Unit of Soil Dynamics and Geotechnical Earthquake Engineering

Development of Synthetic Time Histories – Deconvolution 1D-NL

Uniform Hazard Spectra for Bucharest

Bedrock Vs>800m/s

Research Unit of Soil Dynamics and Geotechnical Earthquake Engineering

Development of Synthetic Time Histories – Deconvolution 1D-NL

Vs (m/s)

Model 2 (450m) EQL-B_0.2g EQL-B_0.2g NL-B_0.2g NL-B_0.2g EQL-C_0.3g NL-C_0.3g 11 EQL-C_0.3g 11 NL-C_0.3g 11 1.1 10.0 10.0 Amplification 1.0 1.0 0.1 0.1 1.0 10.0 1.0 10.0 F (Hz) F (Hz)

Model 1 (160m)

Model 1 (160m)

Model 2 (450m)

Model 1 (160m)

Model 2 (450m)

Comparisons of Spectra

Comparisons of Spectra

Model 1 (160m)

Model 2 (450m)

Comparisons of Spectra

Model 1 (160m)

Model 2 (450m)

Model 1 (160m)

Model 2 (450m)

EARTHQUAKE THESSAL©NIKI ENGINEERING 18 - 21 JUNE 2018

ORGANISERS V PROGRAMME V SUBMISSION REGISTRATION SPONSORS & EXHIBITORS DESTINATION V TOURING & SIGHTSEEING V

4 full days: Prof. N. Ambraseys Distinguished Lecture,
30 Keynote & Theme Lectures.
more than 1000 Oral & Poster Presentations, Special & Technical Sessions,
Technical committee meetings, Exhibition, Pre & Post Conference Tours

Looking forward to welcoming you to Thessaloniki in June 2018